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PREFACE  

The motivation behind this work roots back to my high school years, when my 

parents and high-school geography teacher, Attila Kiss, planted the idea in my mind to 

pursue a research scientist career; indirectly, by their way of thinking about nature, which 

I am sincerely grateful for. The first research article I read was about how changes in the 

Arctic were happening at a pace exceeding the global average; termed Arctic amplification 

(AA). At that time, I did not understand much of the atmosphere, however it was enough 

to gravitate my attention towards climate dynamics. I later on learnt that tropical dynamics 

is the key to drive global atmospheric circulation. Therefore, always pursuing the global 

picture became an essential viewpoint of mine in approaching scientific problems. 

I was lucky to be the member of the Hungarian student research association since 

high school, which provided a community that motivated me to try to be a member or the 

Arctic climate research community. Since from Hungary only few people worked on 

studies related to the Arctic, it appeared to me as a great challenge to meet professors that 

actually work in the frontline of Arctic climate science. That have led me first to Alaska, 

USA where I participated at a summer school on Arctic sea-ice changes at the International 

Arctic Research Center. I am grateful to Prof. Vladimir Alexeev who – despite I was a BSc 

student in the summer school for PhD students – was opened to my restless yet immature 

questions on the Arctic. In short, that is when I decided to focus my attention on the Arctic 

for good, before even starting my MSc studies. At half time of my MSc studies, I spent a 

summer at UC Santa Barbara in California, USA where I started working with Prof. 

Qinghua Ding who has ever since guided my path in becoming a scientist and to whom I 

owe the dynamical perspective on the climate system, which I developed over the past 

years. On top of these international connections, I had also been working closely with 

members of a HAS Momentum Research group at the Institute for Geological and 
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Geochemical Research in Hungary ever since 2015 (1st BSc) under the supervision of 

Istvan Gabor Hatvani and Zoltan Kern. To them I owe my first research paper (Topál et al. 

2016), the learning of important presentation skills and the never-ending personal support 

– including being my PhD advisors. If they – and of course the director of the Institution, 

Attila Demény – had not believed in me that it would be possible to bring Arctic climate 

science to Hungary, I would not have been able to start my PhD. I must also express 

gratitude to Timea Haszpra and Matyas Herein, who co-advised on my master’s thesis and 

from whom I learnt and with whom explored new perspectives how anthropogenic external 

forcing causes changes in internal modes of atmospheric circulation. 

Over the past three-to-four years I received support from the National Research 

Development and Innovation Fund, including four New National Excellence Program 

grants (UNKP-19-3-II; UNKP-20-3-I; UNKP-21-3-II; UNKP-22-4-I), the Co-operative 

Research Program (KDP-5-3/PALY-2021) and a bilateral research grant (2019-2.1.11-

TÉT-2020-00114), which projects drove further my scientific interests and career. 

Overall, in my PhD thesis work I focus on understanding atmospheric drivers of 

Arctic climate changes on interannual, decadal and multidecadal-to-centennial time scales 

by combining paleoclimatic proxy data, observational and modelling analyses. This 

dissertation is a summary of 4 lead-author papers which I wrote between 2019-2022. The 

four individual papers cover four main topics ((i) atmospheric drivers of Arctic sea-ice and 

(ii) the Greenland ice sheet melt, (iii) Arctic climate sensitivity and (iv) Central European 

hydroclimate projections. To distinguish my own work from the one we did with my co-

authors, I will use “I” when referring to what I personally did and “we”, for those 

instances that are results of a team-effort.  
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LIST OF ABBREVIATIONS 

AA – Arctic amplification 
acab – accumulation and ablation rate 
AMO – Atlantic Multidecadal Oscillation 
ASI – Arctic streamfunction index 
CanESM-LE – Canadian Earth System Model Large Ensemble 
CERES - Clouds and the Earth's Radiant Energy System 
CESM – Community Earth System Model 
CISM – Community Ice Sheet Model 
CMIP – Coupled Model Intercomparison Phase 
CSIRO-LE – Commonwealth Scientific and Industrial Research Organization Large Ensemble 
EBAF – Energy Balance and Filled 
ECMWF – European Centre for Medium range Weather Forecast 
EKF400 – Ensemble Kalman Fitting paleo-reanalysis 400 
EOF – empirical orthogonal function 
ERA-I - ECMWF Interim atmospheric reanalysis 
ERA20C - ECMWF 20th century atmospheric reanalysis 
ERA5 - ECMWF atmospheric reanalysis version 5 
ERSST – Extended Reconstructed Sea Surface Temperatures 
GBI – Greenland blocking index 
GCM – global climate model 
GFDL-LE – Geophysical Fluid Dynamics Laboratory Large Ensemble 
GrIS – Greenland ice sheet 
GSI – Greenland streamfunction index 
IMBIE – Ice sheet Mass Balance Intercomparison Exercise 
IPCC – Intergovernmental Panel on Climate Change 
IPO – Interdecadal Pacific Oscillation 
JJA – June-July-August 
LMR – Last Millennium Reanalysis 
LW – longwave radiation 
MAR – Modele Atmospheriqe Regional 
MCA – maximum covariance analysis 
MPI-GE – Max Planck Institute Grand Ensemble 
NASA – National Aeronautics and Space Administration SIA 
NOAA20C – National Oceanic and Atmospheric Administration 20th century reanalysis 
NSIDC – National Snow and Ice Data Center 
ORAS5 – Ocean Reanalysis System 5 
PAGES2k – Past Global Changes 2k 
PDD – positive degree day 
PDO – Pacific Decadal Oscillation 
PI – pre-industrial 
PR - precipitation 
RCM – regional climate model 
RCP – representative concentration pathway 
SAT – surface air temperature 
SIA – sea-ice area 
SIC – sea-ice concentration 
SIE – sea-ice extent 
SMB – surface mass balance 
SMILE – single model initial-condition large ensemble 
SSP – shared socioeconomic pathway 
SST – sea surface temperature 
SW – shortwave radiation 
T - temperature 
U – zonal wind component 
V – meridional wind component 
Z – geopotential height 
  



	
 

4	

1 INTRODUCTION 6 

1.1 SUMMER ARCTIC SEA-ICE CHANGES 7 
1.2 SUMMER GRIS CHANGES 9 
1.3 ARCTIC CLIMATE SENSITIVITY BIAS 11 
1.4 CENTRAL EUROPEAN HYDROCLIMATE PROJECTION UNCERTAINTIES 13 
1.5 AIMS 15 

2 MATERIALS AND METHODS 16 

2.1 REANALYSES, SURFACE ENERGY BALANCE, SEA SURFACE TEMPERATURE AND 
OCEAN TEMPERATURE DATA 16 
2.2 PALEO-REANALYSES AND ICE CORE AND OCEANIC PROXY DATA 17 
2.3 OBSERVATIONAL SEA-ICE, GRIS MASS BALANCE AND ‘MODELE 
ATMOSPHERIQE REGIONAL’ (MAR) SURFACE MASS BALANCE SIMULATIONS 18 
2.4 MODEL EXPERIMENTS: LARGE ENSEMBLES, PRE-INDUSTRIAL & HISTORICAL 
SIMULATIONS IN CMIP5/6 20 
2.5 FAST-MINUS-SLOW COMPOSITE: A SIMPLE BUT EFFICIENT WAY TO DISTINGUISH 
INTERNAL FROM FORCED VARIABILITY 21 
2.6 MAXIMUM COVARIANCE ANALYSIS AND ITS APPLICATION TO VALIDATE THE 
COMPOSITING METHOD 22 
2.7 PSEUDO-ENSEMBLE OF PRE-INDUSTRIAL CMIP5 SIMULATIONS 23 
2.8 NUDGING EXPERIMENTS 24 
2.8.1 IMPOSING WINDS IN THE CESM1 FULLY-COUPLED MODEL 24 
2.8.2 NUDGING EXPERIMENTS WITH THE GLIMMER-CISM V.1.6 ICE SHEET MODEL 25 
2.9 GREENLAND AND ARCTIC STREAMFUNCTION INDICES (GSI/ASI) 26 
2.10 REGRESSION MODEL AND ARCTIC CLIMATE SENSITIVITY TO CO2 27 
2.11 OBSERVATIONALLY CONSTRAINING THE MODELLED ARCTIC FORCED 
RESPONSE TO CO2 29 
2.12 ICE-FREE ARCTIC CDFS 30 
2.13 STATISTICAL SIGNIFICANCE 31 
2.14 STUDY AREA FOR CENTRAL EUROPE 31 
2.15 HISTALP INSTRUMENTAL DATA 31 
2.16 RANKING THE INDIVIDUAL CMIP5 MODELS 32 
2.17 RANK HISTOGRAM TO ASSESS THE PERFORMANCE OF AN ENSEMBLE 35 

3 RESULTS AND DISCUSSION 36 

3.1 AN INTERNAL ATMOSPHERIC PROCESS DETERMINING SUMMERTIME SEA-ICE 
MELTING IN THE NEXT THREE DECADES AND ITS REPRESENTATION IN CLIMATE 
MODELS 36 
3.1.1 SEPTEMBER SEA ICE CHANGES IN THE HISTORICAL AND FUTURE WARMING 
SCENARIOS 37 
3.1.2 YEAR-TO-YEAR ATMOSPHERE-SEA ICE INTERACTIONS 40 
3.1.3 LOW-FREQUENCY ATMOSPHERE-SEA ICE COUPLING FROM 1979 TO 2012 43 
3.1.4 LOW-FREQUENCY ATMOSPHERE-SEA ICE COUPLING FROM 2020 TO 2050 46 
3.2 DISCREPANCIES BETWEEN OBSERVATIONS AND CLIMATE MODELS OF LARGE-
SCALE WIND-DRIVEN GREENLAND MELT IMPACT SEA-LEVEL RISE PROJECTIONS 49 



	
 

5	

3.2.1 OBSERVED AND MODELLED SUMMER GRIS MELT AND OVERLYING CIRCULATION 
CHANGES 51 
3.2.2 SEPARATING DIABATIC VS. ADIABATIC MECHANISMS DRIVING GRIS MELT 54 
3.2.3 WIND-DRIVEN GRIS MASS LOSS AND SEA-LEVEL RISE ACCELERATION 58 
3.2.4 FINGERPRINTS OF REMOTE FORCING ON THE GRIS SINCE 1979 65 
3.2.5 TROPICAL FORCING ON THE GRIS SINCE 1603 AD 69 
3.2.6 POSSIBLE MECHANISMS BEHIND THE OBSERVATION-MODEL DISCREPANCIES 72 
3.3 REASSESSING REGIONAL ARCTIC CLIMATE SENSITIVITY AND ITS POSSIBLE 
BIASES 75 
3.3.1 DIVERGENT MODELLED AND OBSERVED SENSITIVITIES 76 
3.3.2 CONSTRAINING PROJECTED ARCTIC CLIMATE CHANGE 80 
3.3.3 POSSIBLE UNDERLYING CAUSES OF THE SENSITIVITY ISSUES 84 
3.4 CENTRAL EUROPEAN SUMMER HYDROCLIMATE PROJECTION UNCERTAINTIES
 86 
3.4.1 ASSESSING HISTORICAL PERFORMANCE OF CMIP5 MODELS 87 
3.4.2 VALIDATION OF THE RANKING BASED ON THE NOAA 20TH CENTURY 
REANALYSIS 89 
3.4.3 RANK HISTOGRAMS TO ASSESS SMILE PERFORMANCE 91 
3.4.4 A POSSIBLE SOURCE FOR A REDUCED PROJECTION SPREAD: LAND-ATMOSPHERE 
COUPLINGS 92 
3.4.5 PLACING FUTURE PRECIPITATION PROJECTIONS OF THE CONSTRAINED ENSEMBLE 
IN THE CONTEXT OF SMILE PROJECTIONS 97 

4 SUMMARY AND THESES 101 

5 REFERENCES 105 

6 SUPPLEMENTARY MATERIAL 119 

 

  



	
 

6	

1 INTRODUCTION 

Anthropogenic activities advance the level of CO2 concentrations in the 

atmosphere at a rate of approximately 1% per year. This constitutes a time-dependent 

external radiative forcing on the climate system (Peters et al. 2020). Associated changes in 

the global mean surface temperature are likely to have emerged from unforced natural 

processes of the climate system i.e., from internal variability (Hawkins et al. 2020). The 

dramatic reduction in boreal summer (June-July-August, JJA) Arctic sea-ice cover and 

thickness as well as the melting of the Greenland Ice Sheet (GrIS) since the 1990s have 

become iconic symbols of on-going climate change (Vaughan et al, 2013). The emergence 

of regional forced changes from the underlying ‘noise’ in the Arctic is less certain (Ding et 

al. 2014;2017;2019; 1 ; Topál et al. 2022; Topál and Ding in prep), nonetheless, a 

significant – yet uncertain – portion of the observed Arctic warming is undoubtedly 

attributable to anthropogenic forcing and its associated positive feedbacks, collectively 

known as Arctic amplification (Deser et al, 2010; Screen and Simmonds, 2010; Simmonds, 

2015; Notz and Stroeve, 2016; Jahn, 2018; Screen et al, 2018). 

Key goals of this dissertation are to gain better understanding of internal versus 

forced changes in the Arctic (Sections 1.1 and 1.2) and to point out existing model 

limitations that are of pivotal importance to better constrain future projections of Arctic 

sea-ice (Section 1.3), global sea-level rise (Sections 1.2 and 1.3) and Central European 

precipitation projections (Section 1.4) through the viewpoint of papers published by me 

and my colleagues.  

 
1 Research papers that I first- or co-authored are in italics. 
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1.1 Summer Arctic sea-ice changes 

Drivers of sea-ice changes associated with natural variability have been suggested 

to originate from both oceanic (Zhang, 2007; Tokinaga et al, 2017) and atmospheric 

processes (Lee, 2012; Notz, 2014; Swart et al, 2015; Grunseich and Wang, 2016; Ding et 

al, 2017; Wernli and Papritz, 2018; Labe et al, 2019; Olonscheck et al, 2019). Existing 

linkages between observed Arctic JJA atmospheric circulation anomalies – featuring a low-

frequency trend toward mid-to-upper-tropospheric anticyclonic wind anomalies above 

Greenland and the Arctic Ocean – and September sea-ice variability over the past four 

decades are apparent (Ding et al, 2017;2019). This circulation pattern resembles a 

barotropic anticyclone favouring a surface friction-driven top-down adiabatic warming and 

moistening process, which manifests as the primary physical mechanism behind the local 

atmosphere-sea-ice causal interactions (Ding et al, 2017;2019). 

Previous studies attributed 40-50% of the observed summer sea ice melting since 

1979 to this internal atmospheric process (Ding et al. 2019; Ding et al. 2022; Roach and 

Blanchard-Wrigglesworth, 2022). Not only local processes, but internal sea surface 

temperature (SST) variability residing in the tropical Pacific can also have substantial 

impact on Arctic climate (Ding et al, 2014; Baxter et al. 2019; Screen and Deser, 2019). 

Observational and modelling evidence suggest causal links between both tropical Pacific 

(Baxter et al. 2019) and Atlantic (Meehl et al. 2018; McCrystall et al. 2020) SST anomalies 

and Arctic sea-ice variability in a form of Rossby wave-trains emanating from the tropics 

and thus bridging the Arctic with the lower latitudes. Baxter et al. (2019) highlights that a 

recent cold SST anomaly in the east-central tropical Pacific (especially over 2007-2012) 

may act as a source for Rossby-wave trains to propagate into the Arctic and manifest as an 

anomalous high-pressure over the Arctic Ocean. This high-pressure plays a key role to 
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physically link September sea-ice variability with tropical SST changes (Ding et al, 

2017;2019). 

Remote drivers of Arctic sea-ice variability remain elusive for the summer IPO-

Arctic linkage in climate models is different from that in observations. Two independent 

studies consistently imputed an important role for Pacific decadal variability in driving 

accelerated Arctic warming and proposed that the transitioning of the Interdecadal Pacific 

Oscillation (IPO) from cooling to a warming phase can exacerbate sea-ice loss (Svendsen 

et al. 2018; Screen and Deser 2019). While observations suggest an out-of-phase 

relationship between tropical and Arctic surface temperature trends (negative tropical SST 

changes are associated with positive Arctic surface temperature changes (Baxter et al. 

2019; Ding et al. 2019)), Coupled Model Intercomparison Project phase 5 (CMIP5, Taylor 

et al. 2012) historical simulations feature an opposite pattern (positive tropical SST trends 

fall in line with positive Arctic surface temperature trends). In addition, Blanchard-

Wrigglesworth and Ding (2019) recently realized that summertime tropical-Arctic linkages 

are quite weak in magnitude in one state-of-the-art model (Community Earth System 

Model v1, CESM1; see Figure 11 in Blanchard-Wrigglesworth and Ding (2019)). The 

complexity of tropical-Arctic linkages is further exemplified by atmosphere-only model 

relaxation experiments (Ye and Jung, 2019) and by Bonan and Blanchard-Wrigglesworth 

(2020) who recently proposed that the relatively short observational record may hinder us 

from fully understanding the stationarity of tropical-Arctic linkages. These recent results 

highlight the complexity of driving factors leading to Arctic sea-ice melt and 

motivated my PhD to explore the driving mechanisms from new lens and, in 

particular, assess how previously identified atmospheric processes are represented 

across multiple large ensemble simulations2. 

 
2The aims that shape the main thread of this dissertation are indicated with bold letters. 
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1.2  Summer GrIS changes 

The GrIS is the single largest contributor to barystatic sea-level rise (Muntjewerf 

et al. 2020; Hofer et al. 2020). Similar to Arctic sea-ice, it exhibits symptoms of accelerated 

ice loss (Briner et al. 2020; Fettweis et al. 2020; Hanna et al. 2020; Hofer et al. 2020; IPCC 

2021) with serious climatic and ecological consequences. The anthropogenically-forced 

response – multi-model means, or single-model large ensemble means – of GrIS surface 

conditions in CMIP5/6 climate models is mostly consistent with surface temperature and 

mass balance changes derived from satellite-based observations and reanalyses (Fettweis 

et al. 2020; The IMBIE Team 2020; Slater et al. 2020; Noël et al. 2021). Thus, the melting 

of the GrIS has become a key indicator of human influence on the climate system. 

Nevertheless, concerns have also been raised that the underlying physical mechanisms 

responsible for enhanced GrIS melting may differ in observations and models, hence 

models might produce a portion of GrIS warming for wrong reasons (Hanna et al. 2020; 

Delhasse et al. 2021; Topál et al. 2022). In particular, previous studies suggest that the 

observed increase in the frequency and persistence of anticyclonic circulation (blocking) 

anomalies since about 1990 – similar process to the one that drives sea-ice melting – has 

contributed to enhanced GrIS melt over the last three decades (Fettweis et al. 2013; 

Ballinger et al. 2018; Delhasse et al. 2018; Bevis et al. 2019; Hanna et al. 2021). However, 

climate models (both single-model ensembles (Topál et al. 2020a) and individual models 

(Hanna et al. 2018; Ballinger et al. 2018; Delhasse et al. 2021; Luo et al. 2021)) fail to 

depict changes in blocking conditions associated with surface temperature warming around 

the GrIS. This highlights existing discrepancies between the mechanisms causing GrIS 

melt in the observational and model worlds with ramifications for the reliability of 

estimates targeting the GrIS’s sensitivity to anthropogenic forcing (Hofer et al. 2020; Slater 

et al. 2020). Based on the above arguments, I plan to dive deeper and aim to provide 
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a better understanding of the mechanisms responsible for accelerating GrIS melting 

in observations and multiple climate model simulations. 

Anthropogenic emissions driven diabatic warming – i.e., radiative forcing, which is 

further amplified by the surface-albedo feedbacks in the ablation zone and widespread 

cloud radiative effects (Bennartz et al. 2013; Tedesco et al. 2016; Van Tricht et al. 2016; 

Zelinka et al. 2020) – and processes related to large-scale atmospheric and oceanic 

circulation variability together shape the recent changes of the GrIS (Fettweis et al. 2013; 

Hanna et al. 2013; Tedesco and Fettweis 2020; Ding et al. 2017; Hermann et al. 2020; 

Sherman et al. 2020). Regarding the physical mechanisms, circulation-driven surface 

friction is key to creating adiabatic warming around the core of the anticyclone, which 

together with advective effects cause enhancement of longwave radiation anomalies (in 

both components of the longwave radiation: clear-sky and cloud radiative) in the lower 

troposphere (Tedesco et al. 2016; Van Tricht et al. 2016; Hofer et al. 2017; Noël et al. 2017; 

Huang et al. 2021). Synchronously, beneath the centre of the high-pressure, clear skies 

favour incoming shortwave radiation anomalies that tend to amplify GrIS surface melt 

especially in coastal regions with their lower albedo (Bennartz et al. 2013; Bevis et al. 

2019; Hofer et al. 2019). Current understanding thus suggests that GrIS surface conditions 

are determined by a quantitatively yet uncertain combination of (i) atmospheric circulation 

changes primarily via the aforementioned adiabatic warming process and (ii) 

anthropogenic diabatic warming, which may also induce circulation changes due to 

proportional relationships between air temperature and pressure. Nonetheless, previous 

analyses of state-of-the-art climate model simulations indicate weak Arctic wind changes 

in response to anthropogenic forcing and suggest forced temperature changes that are 

vertically rather uniform in the summer season (Ding et al. 2017; Topál et al. 2020a). 

Although one cannot rule out that model biases impact the forced temperature response in 
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the Arctic, the observed mid-to-upper-level wind-driven process, which causes vertically 

non-uniform temperature changes, is an acknowledged contributor in shaping GrIS surface 

conditions during recent decades (Fettweis et al. 2013; Ballinger et al. 2018; Delhasse et 

al. 2018; Bevis et al. 2019; Hanna et al. 2021). 

I find the separation of the above two processes based on their corresponding 

vertical temperature response appealing, which I will use to showcase advantages of 

wind-nudging simulations described below (in Section 2.8). 

1.3 Arctic climate sensitivity bias 

Based on observed rapid changes in the Arctic cryosphere, it has been suggested 

that the Arctic is ‘en route’ to a new state (Landrum and Holland 2020) that may trigger a 

cascade of tipping points (Serreze 2011; Notz and Stroeve 2016; Boers and Rypdal 2021). 

Nevertheless, despite tremendous research efforts over past decades, mechanisms of Arctic 

amplification (Serreze et al. 2006; AA) and Arctic climate change are still difficult to 

pinpoint (Stroeve and Notz 2015; Goosse et al. 2018; Previdi et al. 2021; Moritz et al. 

2022), especially in the melting season (Wernli and Papritz 2018; Huang et al. 2021) 

(Sections 1.2 and 1.3). One key uncertainty is the lack of confidence in the modelled 

sensitivity of Arctic sea-ice and the GrIS to increasing atmospheric CO2 concentrations 

(Stroeve et al. 2007; Winton 2011; Li et al. 2013; Notz and Stroeve 2016; Rosenblum and 

Eisenman 2017) (usually defined as a certain amount of ice melting corresponding to a unit 

of CO2 emission; DeRepentigny et al. 2022). This partially results from our limited 

understanding of the importance of internal variability in contributing to observed Arctic 

warming over the past decades (Swart et al. 2015; Jahn et al. 2016; Delhasse et al. 2018; 

Ding et al. 2019; England et al. 2019; Boers and Rypdal 2021; Bonan et al. 2021). 

If the observed Arctic warming is in part due to internal processes (Swart et al. 

2015; Jahn et al. 2016; Ding et al. 2017; Meehl et al. 2018; Topál et al. 2020a; Chylek et 
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al. 2022;) – exemplified by the halt in the acceleration of sea-ice melting (Baxter et al. 

2019; Francis and Wu 2020) and GrIS melting (Bevis et al. 2019) between 2013-2020 –, 

then the simulated forced response should not be expected to capture the total observed 

signal. Otherwise, a mismatch between Arctic warming in response to CO2 forcing in 

models and observations may be suspected, which is likely attributable to not 

comprehensive-enough physics in models (Fyfe et al. 2013). Different views on the role of 

internal variability lead to diverse perspectives about models’ sensitivity in the Arctic, 

which undoubtedly obstructs reliable projections of forthcoming pathways of the Arctic 

environment in response to climate change and hinder associated adaptation and mitigation 

planning. This year (2022) urgent concerns have been raised highlighting that one quarter 

of the models in CMIP6 have higher sensitivity to CO2 forcing than any of those in CMIP5, 

even to an extent not supported by paleoclimatic evidence (Tokarska et al. 2020; Zhu et al. 

2020; Hausfater et al. 2022). This tendency of CMIP6 models becoming ‘hotter’ in a global 

scale can be further amplified in the Arctic considering that AA processes are well 

simulated in most models (Hahn et al. 2021; Holland et al. 2021). It remains unclear 

whether these ‘too hot’ models are consequent of improvements in models’ physics (Notz 

and SIMIP Community 2020; Zelinka et al. 2020), or it indicates that models are biased 

too warm when driven by high levels of atmospheric CO2 (Zhu et al. 2020). However, it is 

important to note that regardless of changes in sensitivity to emissions, CMIP5 and CMIP6 

models share limitations in representing the complex local Arctic processes and 

teleconnections at play, in particular for atmosphere-ocean-sea/land-ice interactions (Ding 

et al. 2017; Hanna et al. 2018; Ding et al. 2019; Topál et al. 2020a; Delhasse et al 2021) 

and their linkages with large-scale circulation changes driven remotely (Meehl et al. 2018; 

Baxter et al. 2019; Topál et al. 2020a). 
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Hofer et al. (2020) showed that improvements in CMIP6 models, partially related 

to better radiative (cloud) feedbacks (Zelinka et al. 2020), led to simulating unprecedented 

GrIS melting rates by 2100 even without substantial improvements in modelling 

connections of large-scale circulation with local warming processes in the Arctic and over 

Greenland (Hanna et al. 2018; Delhasse et al. 2021; Luo et al. 2021). Hence, identifying 

those CMIP5/6 models that have a better representation of Arctic atmospheric circulation 

– even if these models are currently regarded as ‘low sensitivity models’ (Zhu et al. 2020) 

– may help to provide alternative, dynamically-coherent future GrIS climate projections 

that can enable more effective adaptation and mitigation plans to sea-level rise. 

I aim to further explore (in Section 3.3) consequences of a discrepancy 

between observations and models of upper-tropospheric circulation-driven Arctic 

sea- and land-ice changes. I focus particular attention to a possible delay in the timing 

of the first sea-ice free September and widespread GrIS melting across hundreds of 

available simulations as a consequence of a low sensitivity of the models to large-scale 

circulation driven Arctic warming. 

1.4 Central European hydroclimate projection uncertainties 

Model uncertainties affecting regional Central European hydroclimate projections 

are of similar importance to those of hindering forthcoming pathways of Arctic climate 

change. In particular, uncertain projections of future precipitation changes may put a break 

on effective regional policymaking especially agricultural adaptation plans. Despite 

regional climate models tend to project less summer precipitation in the coming decades, 

observationally constrained global climate models (GCM) in Central Europe agree less on 

future drying in our region (Section 3.4). This topic is of prime importance, since East-

Central Europe is believed to become more susceptible to the incidence of climate 

extremities in response to increased radiative forcing (Seneviratne et al. 2006; Bartholy and 



	
 

14	

Pongrácz 2007; Beniston et al. 2007; Hirschi et al. 2010). GCMs are elaborate tools for 

simulating past, present and future climatic and environmental changes on various 

timescales, however, any projection is riddled with three commonly mentioned 

uncertainties: scenario uncertainty, model uncertainty and internal variability (Stainforth et 

al. 2007; Knutti 2008; Hawkins and Sutton 2009). One practice to acknowledge GCM 

limitations is to use a multi-model ensemble (Suh et al. 2012; L'Heureux et al. 2017) and 

consider each GCM with equal weight. However, to abandon ‘model democracy’ (Knutti 

2010) and weight or give preference to certain models in a multi-model ensemble based on 

performance ranking was also proposed (Merrifield et al. 2019). The latter has proved 

effective in constraining model uncertainty (Knutti et al. 2017) and is of particular 

importance when studying climatic variables (e.g., precipitation) whose future projections 

show large spread between different models (Garfinkel et al. 2020). 

Several studies indicate that structural differences, namely the land-atmosphere 

feedback strength, between models can indeed be a source of uncertainty in future 

precipitation projections (e.g., Schwingshackl et al. 2018). However, the exact physical 

mechanisms such as, how changes in soil moisture affect precipitation or temperature 

extremes remain uncertain (Boberg and Christensen 2012; Taylor et al. 2012a; Berg et al. 

2016). Based on CMIP5 models with more realistic land-atmosphere couplings future 

reduction in summer drying and warm extremes in Central Europe were highlighted (Vogel 

et al. 2018; Selten et al. 2020). 

How internal variability may influence the selection of best performing models and 

thus the uncertainty in future precipitation projections have remained unaddressed. Single 

model initial-condition large ensemble (SMILE; Deser et al. 2020) simulations offer new 

perspectives in this regard. Within the CMIP5 multi-model ensemble one cannot estimate 

the relative role for internal variability and model structural differences in influencing the 
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spread of future precipitation projections since, for example, land-atmosphere feedbacks 

appear with different precision in the 31 CMIP5 models (Cheruy et al. 2014). However, 

with the inclusion of SMILEs new opportunities open: I aim to explore the range of 

future precipitation projections solely due to internal variability (per model) and thus 

place CMIP5 model structural differences in the context of internal variability when 

assessing future hydroclimate projection uncertainties. 

1.5 Aims 

A1: To explore driving mechanisms of sea-ice loss from new lens and, in particular, assess 

how previously identified atmospheric processes are represented across multiple large 

ensemble simulations. 

A2: To dive deeper and provide a better understanding of the mechanisms responsible for 

accelerating GrIS melting in observations and multiple climate model simulations. 

A3: To separate GrIS warming processes based on their corresponding vertical temperature 

change profiles and showcase advantages of wind-nudging simulations. 

A4: To explore consequences of a discrepancy between observations and models of large-

scale circulation-driven Arctic sea- and land-ice changes, in particular, a possible delay in 

the timing of the first sea-ice free September and widespread GrIS melting. 

A5: To explore the range of future precipitation projections due to internal variability and 

place CMIP5 model structural differences in the context of internal variability when 

assessing future hydroclimate projection uncertainties.  
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2 MATERIALS AND METHODS 

The data and methods corresponding to the four main topics outlined in the 

Introduction are presented below in one coherent section. 

2.1 Reanalyses, surface energy balance, sea surface temperature and ocean 
temperature data 

In an effort to address A1, I use monthly geopotential height (Z) and temperature 

(T) data at 27 pressure levels and the surface air temperature (SAT) variable from the 

European Center for Medium Range Weather Forecasting (ECMWF) reanalysis ERA-

Interim (ERA-I) (Dee et al, 2011) (in Section 3.1). Despite uncertainties between different 

reanalysis data sets, Ding et al. (2017) showed that ERA-I well reproduces the radiosonde 

measurements in and around the Arctic, therefore I compare the models to ERA-I. I also 

use global 300-hPa and 500-hPa horizontal winds (U, V) and SAT from the ERA5 reanalysis 

(Hersbach et al. 2020) (1979-2020), the ERA 20th century reanalysis (Poli et al. 2016; 

ERA20C) (for the period of 1900-2014) and the NOAA 20th century reanalysis version 3 

(Compo et al. 2011; Slivinski et al. 2019; NOAA20C) (for the period of 1835-2010) when 

exploring A2, A3 and A4. While working towards the goals of A2 and A3, I also use the 

Extended Reconstructed Sea Surface Temperature (ERSST) dataset version 5 (Huang et al. 

2018; ERSSTv5) from 1979 to 2020 and the Clouds and the Earth's Radiant Energy System 

(CERES) Energy Balanced and Filled (EBAF; Kato et al. 2018) edition 4.1 monthly means 

of surface net long- and shortwave radiation (LW and SW, respectively) for a satellite-

based, simplified estimate for Greenland surface energy balance (excluding latent and 

sensible heat fluxes, indicated by SEB* in Eq. 1) for the period 2001-2020 (in Sections 3.2 

and 3.3). 

SEB∗ 	= 	 (LW	"#$ +	SW"#$)%&'()*#  (Eq. 1) 
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EBAF is considered to be a leading benchmarking tool for evaluating the Arctic 

radiative budget in model simulations (Loeb et al. 2018). For A2 and A3, I also use potential 

temperature from the ORAS5 ocean reanalysis product (Zuo et al. 2019). 

2.2 Paleo-reanalyses and ice core and oceanic proxy data 

I reduce uncertainties arising from the relatively short observational records, to 

meet aims A2 and A3 (Section 3.2) and utilize two paleoclimatic data assimilated climate 

model experiments (so-called paleo-reanalyses), the Ensemble Kalman Fitting (EKF) 400 

version 2 (Valler et al. 2021) and the Last Millennium Reanalysis version 2.1 (Tardiff et 

al. 2019). Both products assimilate early instrumental observations along with proxy data 

including tree ring, coral and sedimentary archives, but only the LMR2.1 assimilates ice 

cores from the GrIS. For assimilated data details see Valler et al. (2021) and Tardiff et al. 

(2019). I primarily focus on the EKF400 and its timescale (1602-2003 AD) because of 

slight differences in available variables from the two reanalyses; the advantage of EKF400 

is that it provides horizontal winds at 200hPa to calculate streamfunction from, which is a 

key metric used to measure circulation-driven changes over the Greenland ice sheet (see 

further details below in Section 2.10). The reason why I apply these extended reanalysis 

datasets is to provide evidence for the consistency of observed circulation driven GrIS 

climate variability over centennial timescales. I further utilize 30 Greenland ice core 

records (with record lengths varying between 194 and 384 years) from the Iso2k database 

(Konecky et al. 2020) that are not assimilated in the EKF400 and 33 oceanic coral records 

(Supplementary Table 1) from PAGES2k Consortium (2017) that are assimilated in the 

EKF400 as the basis of observational constraints when evaluating the EKF400 simulated 

past 400 years Greenland surface temperatures and the tropical-Arctic teleconnection in 

Figure 3.2-10b,d. I have selected the ice core and coral proxy records that were available 

with at least annual resolution. When comparing the maximum covariance analysis (MCA) 
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expansion coefficient time series derived from the EKF400 (see details on the MCA below 

in Section 2.6) to known decadal SST variability indices, I compute the Pacific Decadal 

Oscillation (PDO*) index along with the Atlantic Multidecadal Oscillation (AMO*) index 

from the EKF400, marked with an asterisk in the text. The PDO* is defined as the first 

principal component time-series of the EOF of SST poleward of 20ºN, while the AMO* is 

the spatially averaged SST in the North Atlantic basin over 0-80ºN after having removed 

the global mean SST (for both the PDO* and AMO*). 

2.3 Observational sea-ice, GrIS mass balance and ‘Modele Atmospheriqe 
Regional’ (MAR) surface mass balance simulations 

Throughout the text, sea-ice data is derived from the National Snow and Ice Data 

Center (NSIDC) Climate Data Record of Passive Microwave sea ice concentration (SIC), 

version 3 of the NSIDC (Cavalieri et al, 1996). When working towards the goals of A1 and 

A4 (Sections 3.1 and 3.3) I calculate sea-ice area (SIA) as the product of ice concentration 

and grid element area in each sea-ice grid. Then – following the definitions of the NSIDC 

– the September total sea-ice area index (SIA index) is constructed as the sum of sea-ice 

area in all Arctic (poleward of 60ºN) grid cells where ice concentration is greater than 15%. 

Given the sensitivity of sea-ice’s annual minimum to climate variability in the Arctic, I 

focus on the September total SIA index from observations and each of the model 

simulations when examining the atmospheric drivers of sea-ice variability. To derive 

insights on possible delays in the timing of the first sea-ice free September (A4, Section 

3.3) I calculate sea ice extent (SIE) as the sum of grid element area in each sea ice grid with 

at least 15% of ice concentration in the Arctic (poleward of 60ºN). Note, that the difference 

between SIA and SIE is that SIA considers the actual ice concentration in a grid cell, while 

SIE is more like an overall measure of ice extent. Thus, SIA is a more realistic measure of 

sea-ice, however one must also acknowledge ice-concentration measurement biases 
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originating from the passive microwave sensor on satellites when deciding which sea-ice 

index to use. The most common definition of the timing of the first “sea-ice free summer” 

refers to a future time point at which September SIE falls below one million square 

kilometres (Laliberté et al. 2016; Wang et al. 2009). 

In an effort to fulfil the goals of A2 and A3 (Sections 3.2 and 3.3), I also use data 

from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE) 2019 Greenland 

Dataset as the satellite-based observational estimate of ice mass changes in the GrIS over 

the period of 1980-2018 (The IMIBE Team 2020). The dataset represents reconciled mass 

balance estimates from three independent satellite-based techniques (gravimetry, altimetry 

and input-output method) (for more details see The IMBIE Team (2020)). In addition, I use 

surface mass balance (SMB; Eq. 2) and SAT output from the MAR, which is a regional 

climate model (Gallée et al. 1994) specifically designed and physically optimized for polar 

areas (Amory et al. 2015). 

SMB	 = 	precipitation+,+-.	–	runoff/0.+1-+02	– 	sublimation/evaporation  (Eq. 2) 

The MAR combines atmospheric modelling (Gallée et al. 1994) with the Soil Ice 

Snow Vegetation Atmosphere Transfer Scheme (Fettweis et al. 2017) and has been 

thoroughly evaluated and used to simulate surface energy balance and mass balance 

processes over the GrIS (Fettweis et al. 2011; Fettweis 2007). I use model version 3.11 6-

hourly forced at its lateral boundaries (temperature, specific humidity, wind speed, 

pressure, sea surface temperature, and sea ice concentration) by ERA5 reanalysis at 1×1 

km2 spatial resolution. I use monthly output during the 1980-2020 period. The MAR SAT 

fields are considered to be the closest match (relative to ERA-I or ERA5 reanalyses) to 

satellite observed GrIS surface temperatures (Delhasse et al. 2020). 
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2.4 Model experiments: large ensembles, pre-industrial & historical 
simulations in CMIP5/6 

Internal variability is an inherent feature of the climate system. When creating 

SMILEs, unlike the CMIP5/6 ensemble, the same model is run several times with small 

perturbations in the initial condition, thus the single runs – that share the model physics and 

the external forcing – are considered parallel realizations of the same model. In this way 

internal variability and the forced component are separable within a certain model, which 

is an advantage over using multi-model simulations when exploring internal processes in 

the climate system (Drótos et al. 2015). 

When working towards the goals set forth in A1 to A5, I utilize six currently 

available CMIP5/6 SMILEs of fully coupled Earth System Models collected by the US 

CLIVAR Large Ensembles working group (Deser et al. 2020) including (i) the Max Planck 

Institute 100-member Grand Ensemble (MPI-GE; Maher et al. 2019), (ii) the CanESM2 50-

member LE (CanESM-LE) (Kirchmeier-Young et al. 2017), (iii) the CESM1 40-member 

LE (CESM-LE) (Kay et al. 2015), (iv) the CSIRO-Mk3.6 30-member LE (Jeffrey et al. 

2013) and (v) the GFDL-CM3 20-member LE (GFDL-LE) (Sun et al. 2018), in addition to 

a more recent CMIP6 large-ensemble the (vi) 100-member CESM2 Large Ensemble 

(CESM2-LE, Rodgers et al. 2021). From the CMIP5 ensembles I use model output for 

1979-2099 with CMIP5 historical forcing (Taylor et al. 2012) until 2005 and RCP8.5 

forcing 2006 onwards. With respect to the CESM2-LE, I use CMIP6 historical forcing until 

2014 (as of the protocol) and the SSP3.-7.0 scenario for 2015-2100. Additionally, I also use 

the other two available RCP2.6 and RCP4.5 forcing scenarios from MPI-GE for 2006-2099, 

which allows to examine interactions between internal climate variability and 

anthropogenic forcing with different intensity. In addition, I utilize historical+SSP5.-8.5 

simulations with 29 CMIP6 models (21 CMIP6 models for sea ice) and 31 CMIP5 pre-

industrial (PI) control simulations. The pre-industrial runs contain integrations longer than 
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200 years representing a realization of one individual model. The reason I include these 

runs to meet A1 is to assess whether the bias in Arctic teleconnections and atmosphere-sea-

ice interactions from the large ensembles are common across all available models in 

CMIP5/6. In Section 3.1, to reduce uncertainty arising from the different model physics, I 

primarily focus on the mean of four large ensembles (excluding CSIRO-LE, for details see 

Section 3.1.1) and the mean of 31 PI simulations. Before averaging, all model outputs are 

regridded onto the ERA-I 1.5° regular grid applying the ERA-I land-sea mask. 

2.5 Fast-minus-slow composite: a simple but efficient way to distinguish 
internal from forced variability 

Teasing apart internal variability of any observed and simulated variable from its 

forced component is challenging. To fulfil A1, making use of the state-of-the-art SMILE 

simulations, I implement a simple method to separate atmospheric processes originating 

from internal climate variability from those resulting from the models’ forced component. 

I focus on the spread of September total SIA index variable between the members of the 

ensemble that lets us separate groups of members showing relatively fast and slow melting 

between 1979-2012 (based on linear trends). I target the historical analysis in Section 3.1 

at the 1979-2012 period when the strongest September sea-ice melting is observed along 

with remarkable JJA geopotential height rise above Northeast Canada and Greenland (Ding 

et al, 2014;2017;2019; Mioduszewski et al, 2016). Having identified those members of the 

fast- and slow-melting groups I average the corresponding linear trends in JJA, e.g., 200-

hPa geopotential height (Z200), in each group and calculate the difference between the two 

Z200 composites. I do the same with zonal mean geopotential height (Z), zonal mean 

temperature (T), (SAT) and September SIA. I refer to the difference of the fast and slow 

group Z200 (Z, T, SAT, SIA) trends as the fast-minus-slow Z200 (Z,T,SAT,SIA) composite. 

Because all ensemble members are forced in the same way, the fast-minus-slow composites 
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remove the forced signal and retain signals that originate from fundamental internal 

atmospheric variability. Since correlation between sea-ice and a given atmospheric 

variable, assuming linearity, reflects the strength of the coupling between them, I can 

compare the composite trend patterns to the results obtained from the correlation analysis 

to determine whether a similar pattern is present over the two timescales. Following Ding 

et al. (2019), I choose ~15% (approx. 1 standard deviation from the mean) of the total 

number of ensemble members (members in each group: MPI-GE: 15, CanESM-LE: 7, 

CESM-LE: 6, CSIRO-LE: 5 and GFDL-LE: 3 members) to the fast and slow groups. 

2.6 Maximum covariance analysis and its application to validate the 
compositing method 

To (i) account for possible limitations of the fast-minus-slow composite (in Section 

3.1) as well as to (ii) assess coupled variability between different climatic fields (Section 

3.2) I apply maximum covariance analysis (MCA; Bretherton et al, 1992). MCA is used to 

reveal the maximum coupled variability using singular value decomposition of the 

covariance matrix between geopotential at a certain pressure level (e.g., 500hPa or 300hPa) 

and global SST or sea-ice variability. I further explore how well the aforementioned fast 

and slow sea-ice melting groups represent the total ensemble spread of the simulated 

atmosphere-sea ice interactions. In doing so, first, I calculate linear trends in all members 

of a given SMILE over 1979-2012 for both JJA Z200 and September SIC within the Arctic 

(north of 60°N). Second, I remove the ensemble mean trend from each member, so the 

residual trends of each member only reflect inherent internal variability of a model over the 

selected time period. To understand how sea-ice and Z200 are coupled in the Arctic due to 

pure internal variability, I calculate MCA between JJA Z200 and September SIC trend fields 

across all the members in a given SMILE similar to Li et al. (2017), hereafter referred to as 

“inter-member MCA”. In this way, the time expansion coefficients will not reflect temporal 
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changes, rather member series, which I compare to the magnitude of September total SIA 

index linear trend derived from each member. The comparison reveals that the fast and slow 

melting groups (based on one-standard deviation of linear trends in September total SIA 

index) show the strongest negative and positive loading in the inter-member MCA. Thus, 

the fast-minus-slow composite can basically capture the leading mode of co-variability 

between Z200 and sea ice for 1979-2012 as well as for the future (2020-2050) timeframe 

as the repeated analysis confirmed (see Haszpra et al. (2020): Figure 3 therein). 

2.7 Pseudo-ensemble of pre-industrial CMIP5 simulations 

Additionally, in Section 3.1, I extend the fast-minus-slow method (Section 2.5) to 

31 CMIP5 models that have at least 200-yr-long pre-industrial control simulations. Cutting 

the 200+ year-long control runs into consecutive 34-yr periods I create a pseudo-ensemble 

with 𝑛 − 33 members, where 𝑛  is the length of the given CMIP5 model’s control run 

(Rosenblum and Eisenmann, 2017, Ding et al, 2019) and each member corresponds to a 34-

yr long time-series (as parallel realizations of the observed 1979-2012 period). The pseudo-

ensemble members are not initialized with perturbations in the initial condition and the 

consecutive members have overlapping periods. Therefore, strictly speaking they do not 

represent the full scope of possible climate states allowed by internal variability. However, 

the control runs have constant external forcing thus the members of the pseudo-ensemble 

are assumed to be generated by the given model’s purely internal climate physics. I then 

search for the 34-yr long periods showing the fastest and slowest sea ice melting based on 

linear trends and difference the corresponding Z200 (Z,T,TS,SIA) trends to construct the 

fast-minus-slow composite. Similar to the real-ensemble calculations 15% of the total 

number of the pseudo-ensemble members for each of the fast and slow groups were 

selected. Averaging these 31 fast-minus-slow composite patterns I provide an overview of 
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CMIP5 model performance in capturing the observed coupling of sea-ice with both the local 

Arctic and remote tropical atmosphere on low-frequency timescales. 

2.8 Nudging experiments 

2.8.1 Imposing winds in the CESM1 fully-coupled model 

First, led by Qinghua Ding at the University of California Santa Barbara, the fully-

coupled CESM1 (including atmosphere (CAM5), ocean (POP2), sea ice (CICE4) and land 

(CLM4.5) components) was used to conduct nudging experiments to explore and quantify 

the influence of circulation changes on the GrIS. 6-hourly zonal and meridional winds from 

ERA5 were used to constrain the Arctic (>60ºN) circulation in the CESM1 from the surface 

to top-of-atmosphere while keeping all external forcing agents (solar, GHG, aerosols, etc.) 

constant at their year 2000 levels. As shown by previous studies (Huang et al. 2021; Li et 

al. 2022), the response of CESM1 to nudging winds is insensitive to how winds are imposed 

in the low levels of the model. During the nudging procedure, simulated winds are relaxed 

in each time step to corresponding ERA5 winds (interpolated from 6-hour interval to model 

time steps (1800 seconds)) by adding an additional tendency term in the momentum 

equations, which is calculated as the difference between ERA5 winds and models’ winds 

at each grid in each step. In these experiments, full nudging is utilized so that zonal and 

meridional winds are forced to vary exactly as observed in the model within the Arctic. In 

this way, the simulations perfectly ‘replay’ observed circulation variability in the Arctic 

atmosphere while other components of the model solely respond to these specified wind 

changes. In addition, a long spin-up run is conducted before the 10-member nudging runs 

to ensure that the nudging simulation has no significant ‘numerical shock’ in the early 

period when reanalysis winds are suddenly added in the Arctic. To do so, a 150-year long 

external forcing-fixed (at year 2000 levels) nudging simulation is performed with the model 

perpetually nudged to winds of year 1979 in the Arctic in the same setting as what was 
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used in the 10-member nudging runs. 150 years was deemed an adequate period for the 

model to well adjust to perpetually imposed reanalysis winds (year 1979) in the Arctic and 

to reach an equilibrium state. The model states on 1 January of the last 10 years of this spin-

up are then used as initial conditions to reinitiate a set of new 10 members of 42-yr nudging 

simulations in which nudged winds in the Arctic began to vary from 1979 to 2020. 

I mainly focus on the ensemble mean of the 10 members in the CESM1 nudging 

experiments and compare it to the 40-member CESM-LE. This comparison reveals the 

importance of observed winds in causing the recent acceleration of GrIS melt and 

corresponding increase in the rate of barystatic sea-level rise relative to simulated GrIS 

changes in the ensemble-mean (forced response) and the ensemble spread (internal 

variability) in the CESM-LE, considering that the same model is used to create the nudging 

simulations to that of the initial-condition large ensemble. 

2.8.2 Nudging experiments with the Glimmer-CISM v.1.6 ice sheet model 

Second, output fields derived from one member (no. 4) of the 10-member nudging 

experiments were selected to drive the Community Ice Sheet Model (CISM) Glimmer 

version 1.6 (Rutt et al. 2009) and the model variable “acab = accumulation and ablation 

rate [m/yr]; land ice surface specific mass balance” was studied as a counterpart for MAR 

SMB. Only one member was selected due to computational limitations. The Glimmer 

model requires atmospheric 3-hourly (precipitation, solar radiation, temperature, pressure, 

humidity and winds at the surface) forcing fields that specify the state of the atmosphere 

and the radiative fluxes above the GrIS. All these 3-hourly forcing fields are generated by 

CESM1 in which the models’ winds are nudged to ERA5 reanalysis in the Arctic (>60ºN). 

Although the CISM-Glimmer’s positive-degree-day (PDD, see details in Section 1.5 in 

here) scheme relating surface air temperatures to ice melting is insufficient to properly 

model future climate changes (because the empirical formulae used for present climate may 
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change under climate change), it is adequate for use in the nudging approach where I only 

qualitatively investigate circulation driven GrIS accumulation/ablation rates. Since the 

CISM-Glimmer’s “acab” approximates the MAR SMB, forcing the CISM-Glimmer with a 

member from the CESM1 fully-coupled nudging simulations enables wind-driven 

adiabatic Greenland SMB changes to be distinguished from diabatic processes. Caveats of 

the CISM-Glimmer nudging experiment include climatological biases in the simulation of 

SMB and an overestimated melting over the period 1980-2018 compared to MAR 

(Supplementary Figure 3) that is probably related to known limitations of the CISM-

Glimmer such as the only available shallow ice-dynamics and the PDD scheme. In Section 

3.3, due to data unavailability, I only use SMB from the CESM2-LE to compare it with the 

MAR derived SMB, when assessing the SMB response to the regional Arctic climate 

sensitivity bias. In this latter case, note that the CESM2 has an interactive ice sheet model 

within its land model, therefore the SMB calculations are more realistic. 

2.9 Greenland and Arctic streamfunction indices (GSI/ASI) 

When addressing A2 to A4 (Sections 3.2 and 3.3), to characterize wind-driven 

circulation aloft the Arctic and the GrIS, respectively, while synchronously taking into 

consideration large-scale variability, the mean of the area-weighted 300 or 500hPa 

streamfunction calculated from the 300 or 500hPa horizontal wind field over the Arctic 

(>60ºN) and over the GrIS (only land points between 80ºW-20ºW and 59ºN-85ºN) was 

computed to derive the Arctic/Greenland streamfunction index (ASI;GSI). I calculate the 

GSI and ASI in reanalyses (ERA5, NOAA20C, ERA20C) as well as in model simulations 

(a total of 340 members of three selected SMILES, see Section 3.3) and in 31 CMIP5 and 

29 CMIP6 simulations separately using Eq. 3. 
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∇3Ψ = −𝜉   (Eq. 3), 

 where 𝜉 = 45
46
− 4&

47
, is the vorticity of the horizontal wind field. 

Also, since by definition the streamfunction u = 48
47

 and v = − 48
46

 , it satisfies the 

horizontal non-divergent criteria i.e., 4&
46
+ 45

47
= 0 . Thus, the ASI/GSI measures the 

rotational (non-divergent) component of atmospheric circulation variability over the 

Arctic/Greenland and since it explains the majority of large-scale circulation variability in 

the high latitudes, it exerts a strong force on the temperature field through surface friction-

driven adiabatic processes.  

The GSI and ASI represent tropical-extratropical interactions through the following 

considerations. It can be derived by substituting the weak temperature gradient 

approximation of the thermodynamic equation (Sobel et al. 2001) into the continuity 

equation, that tropical diabatic heating generates large-scale horizontal divergence: 

∇ ∙ 𝒗G∗ 	≈ 4
49
( :
;!
) (Eq. 4), 

where v is the horizontal velocity vector and the overbar donates a time mean, the 

asterisk the departure from the zonal mean and N2 is the static stability with Q being the 

diabatic heating term. Eq. (4) leads to driving rotational flow through the vortex stretching 

term in the stationary eddy vorticity equation (Eq. 5 in Lutsko (2018)). In short, these 

theoretical considerations motivated the use of the GSI/ASI when building the arguments 

described in Section 3.3. 

2.10 Regression model and Arctic climate sensitivity to CO2 

Also in Section 3.3, to ensure a fair comparison between the modelled and 

observed sensitivities of Arctic SAT to synchronous changes in upper tropospheric 

circulation, I linearly regress out the ASI (GSI) from Arctic (GrIS) SAT index (obtained as 
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the spatial-averaged SAT values) in ERA5 reanalysis and in a total of 240 SMILE members 

and in 60 CMIP-class models separately in JJA over 1979-2020. The ratio (R) of the linear 

trends (1979-2020) in the raw and residual SAT time series, 

!<=>"#
?@ABCDEF	H?@IC	JK∗C@LEC@MNO
?EP	H?@IC	JK∗C@LEC@MNO ∗%&&%(  (Eq. 5) 

is used to quantify the sensitivity of SAT to large-scale circulation. To circumvent 

possible distortions of the correlation in the regression model caused by the underlying 

anthropogenic forcing induced secular trend, linearly detrended (1979-2020) values of both 

the SAT and SIE indices and the ASI/GSI were used when creating the regression model. 

The calculations were repeated without the detrending, which yields a ~15% increase in 

the difference between the R values in observations and in the four model ensemble means. 

This translates into an extra ~10 years on average in the four model ensembles in terms of 

the delay of the projected first ice-free September (see Section 3.3. for details). 

When translating the SAT-derived results to sea-ice, first, I create the September 

SIE index in observations, in the three SMILES and in 21 CMIP6 models – which constitute 

the raw SIE index – before linearly regressing out the ASI from the raw SIE in observations 

and each of the (single- and multi-model) ensemble members separately to get the residual 

SIE indices. Then I calculate the reduction in SIE per a tonne of observed CO2 emission 

over 1979-2020 assuming linearity (m2 of SIE change per a tonne of CO2 emission) in both 

the raw and residual SIE indices to obtain the corresponding SIE sensitivities to observed 

cumulative CO2 emissions. I repeat these calculations using the MAR and the CESM2-LE 

simulated GrIS SMB indices averaged over the GrIS in the melting season (JJA) and 

compute the reduction in SMB per a tonne of observed CO2 emission over 1979-2020 

assuming linearity (mm water equivalent yr-1 of SMB change per a tonne of CO2 emission). 
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2.11 Observationally constraining the modelled Arctic forced response to CO2 

To reach the goals of A4 (Section 3.3), I first subtract the 1979 value of the raw 

SAT or SIE (GrIS SMB) index for each timestep between 1979 and 2100 in each of the 

SMILE and CMIP6 members to get the change rate of SAT or SIE (GrIS SMB). Then, I 

time the modelled change rate by the difference between the modelled ensemble mean and 

the observed R values (which is based on the 1979-2020 period) to obtain the constrained 

change rate of the modelled SAT, SIE and SMB, which is then used to obtain the constrained 

SAT, SIE and SMB model projections for the 1979-2100 period. In this way all three 

variables’ R (Eq. 5) values, respectively, will be identical in the model ensemble means to 

the observed ones (for the 1979-2020 period). I assume that the ensemble spreads in each 

of the SMILEs and in CMIP6 do not change with time; the constrained spread changes in 

accordance with the constrained ensemble mean, which is due to that the modelled forced 

response underestimates the role of large-scale circulation-driven Arctic warming. This 

yields the constrained Arctic forced response. When using CMIP6, I assume that the forced 

response can be derived based on the average of the different models, but I acknowledge 

that this may be biased due to model interdependency and differences in the model physics 

(Knutti et al. 2017; Drótos et al. 2015). 

Once the raw ensemble mean projection indicates an ice-free Arctic Ocean, the 

melting rate slows down and the variability between the ensemble members decreases, 

which is needed to be accounted for when calculating the constrained ice-free dates in the 

model ensembles. This introduces a physically not plausible slow-down in the constrained 

SIE projections too. Thus, I calculate the excess SIE between the constrained and 

unconstrained ensemble mean SIE projections at that time step when the raw projection 

indicates the first ice-free date (traw_free). I then interpolate the constrained ensemble mean 

SIE time series after traw_free by assuming the same SIE melting rate as in the preceding two 
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decades. I assume that the ensemble spread changes in accordance with the ensemble mean, 

similar to the calculations for R (Eq. 5), as I primarily constrain the forced response. Since 

the size of the time-window is selected arbitrary, I repeat the calculations using time-

windows of size 15 to 25 years. Using different time-windows, the ‘likely’ probability (P 

> 0.66) of an ice-free date stays within 1 year of our central estimate using the 20-yr long 

window for the CESM-LE and MPI-GE ensembles, and within 3 years for the CESM2-LE. 

I attribute this difference to the low sea-ice mean state bias in CESM2 (Kay et al. 2022). I 

acknowledge this as a caveat to my constraining method, however it very well showcases 

the delay in the ice-free date due to the oversensitivity issue. 

Similarly, I calculate the date when the projected GrIS SMB in the CESM2-LE 

crosses SMB=0, which is considered as the turning point of widespread melting. Since I 

did not see such slow-down as in the case of SIE, I simply use the adjusted time series when 

constraining the date of widespread GrIS melting, similar to the case of the SAT. 

2.12 Ice-free Arctic CDFs 

I compute cumulative probability density functions (CDF) using kernel density 

estimation (Python package seaborn) based on the histogram of each members’ raw ice-

free date and the ones obtained by the constraining method (see above) in the three SMILEs 

and in CMIP6. Similarly, I calculate the CDF of widespread GrIS melting in the raw and 

the constrained CESM2-LE SMB projections and in raw & constrained SAT projections 

corresponding to the date when it first reaches 1ºC, 1.5ºC and 2ºC JJA warming above pre-

industrial levels (defined as the period of 1850-1900) in the CESM2-LE, MPI-GE and 29 

CMIP6 models. These calculations are meant to exemplify how accounting for the 

observation-model discrepancy in their corresponding R values may cause a change in the 

modelled probability of the timing of an ice-free Arctic, especially the forced response (the 

central estimate). Since current CO2 observations better follow the RCP8.5 or SSP5.-8.5 



	
 

31	

scenarios, I primarily use those scenario projections when suggesting that it is not likely to 

see an ice-free September before 2050 (see Section 3.3). 

2.13 Statistical significance 

In Section 3.1 I use the Student’s t-test (Student 1908) to calculate significance of 

both correlations and composite values. Linear trends of time series are removed each time 

before calculating correlations. Throughout the dissertation, the effective sample size (N) 

is used to determine the statistical significance as computed by 

𝑁 = 𝑀 ∗ (R-	'"'!)
(RT	'"'!)

,   Eq. (6) 

where r1 and r2 are lag-one autocorrelation coefficients of each variable and M is the 

original sample size. A p = 0.05 level is used to determine the significance. 

2.14 Study area for Central Europe 

To address A5, I use the primary target area consisting of the northeast (NE) and 

southeast (SE) subregions of the Greater Alpine Region (43°N-50°N; 13°E-19.5°E; Figure 

3.4.1), which have been delineated by Auer et al. (2007) based on the regionalization of 

certain climatic variables. It was chosen to cover the region of interest (East-Central 

Europe), where precipitation projections of CMIP5 models show large spread for both 

summer and winter. To ensure the robustness of results based on the primary target area, 

supplementary calculations were performed on an extended domain (43°N-57°N; 4°E-

20°E; Figure 3.4.1) corresponding to the east-central European part of the area used in 

Vogel et al. (2018). 

2.15  HISTALP instrumental data 

For the basis of model assessment, I use monthly surface temperature (TS) and 

precipitation (PR) data from the HISTALP coarse resolution subregional mean (CRSM) 
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series for the northeast (NE) and southeast (SE) subregions of the Greater Alpine Region 

(Figure 3.4-1) for 1861-2005 (Auer et al. 2007). 

2.16 Ranking the individual CMIP5 models 

As a preliminary step, model output was interpolated onto the same regular 1.5° 

grid, and anomalies (relative to 1961-1990 to match the HISTALP anomaly time series) 

were calculated for all the individual historical CMIP5 simulations. Boreal summer (June-

July-August: JJA) and winter (December-January-February: DJF) averages were derived 

annually for both the CMIP5 historical (1861-2005) and future (2006-2100) simulations 

and the observations of TS and PR. Additionally, both observational and model data were 

smoothed with a centralized 31-year moving average to mostly account for multidecadal 

low-frequency variability (as is the standard practice to minimize the effect of internal 

variability in single model realizations; e.g., McCabe and Palecki 2006; Senftleben et al. 

2020) and to ensure comparability to the GCM data with relatively coarse grid resolution. 

Data preparation resulted in area-averaged and smoothed time series for the two subregions 

(NE and SE) for each model, variable and season along with the observed time series. 

I used three statistics for the individual CMIP5 models’ assessment with root-mean 

square error (RMSE) being the primary one in addition to the fraction of temporal Pearson 

correlation coefficient and mean-absolute error (referred to as: rank) and the Nash-Sutcliffe 

efficiency (NSE, Nash and Sutcliffe 1970) calculated between the observed and simulated 

time series. The reason I include temporal correlation is to measure to what extent 

simulated long-term (the time series are smoothed with a 31-yr moving average) changes 

in PR and TS are in-phase with observations as it is expected for a model to reproduce 

observed low-frequency TS and PR changes. The NSE (Eq. 7) is calculated based on the 

observed (𝑜𝑏𝑠) and simulated (𝑠𝑖𝑚) time series pairs as: 
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𝑁𝑆𝐸 = 1 − ∑ (VW%X%YZ)!#
$%"

∑ [(VW%X(VW%\\\\\)]!#
$%"

  (Eq. 7), 

where 𝑛 is the length of the timeseries and T𝑜𝑏𝑠UUUUUV indicates the time-mean of the 

observed time series. The 𝑁𝑆𝐸  ranges from -∞ to 1, where 1 would mean the perfect 

observation-simulation match (which is not possible) and 𝑁𝑆𝐸 = 0  indicates that the 

modeled time series’ mean-square-error is commensurable with the variance of the 

observed time series. 

For simplicity I now only go through the ranking steps for the RMSE as the 

calculations are the same for the other two statistics. First, RMSE corresponding to each of 

the two seasons (JJA and DJF) were calculated for both variables (referred to as TS and PR 

seasonal RMSE) for the two subregions separately. Then the RMSE values were averaged 

for the two subregions and seasons for the two variables separately (referred to as mean 

RMSE of TS or PR). I also assess the overall performance of a model in reproducing the 

observed past hydroclimate variability in the target region and introduce the grand-RMSE, 

which is the average of the TS and PR mean RMSE values. To ensure comparability of the 

RMSE of PR and TS I rescaled the values (for both variables) to range between 0 and 1 (Eq. 

8) before averaging them into the grand-RMSE, which is the arithmetic mean of the scaled 

mean RMSE of TS and PR. 

𝑅𝑀𝑆𝐸%*)^#_ =	
Z#)"`abc	X /de

&%",… ,)
	(Z#)"`abc)

/-f
&%",… ,)

(Z#)"`abc)	X	 /de
&%",… ,)

(Z#)"`abc)
  (Eq. 8), 

where 𝑚  goes through the 𝑀 = 32  CMIP5 models (Table 1). Note, that the 

applied rescaling is based on the maximum and minimum values of the mean RMSE to 

maintain the relative differences between each model’s performance.  
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Table 1. 32 CMIP5 models used in A5 (excluding NorESM1-M (marked with *) for the future 
timeframe). Expansions/definitions of the models are available online 
(https://www.ametsoc.org/PubsAcronymList). 

CMIP5 MODEL 
ACCESS1-0 
ACCESS1-3 
CanESM2 

CMCC-CESM 
CMCC-CM 
CMCC-CS 

CNRM-CM5 
CSIRO-MK3.6 

FGOALS-s2 
GFDL-CM3 

GFDL-ESM2G 
GFDL-ESM2M 

GISS-E2-CC 
GISS-E2-H 

GISS-E2-R-CC 
GISS-E2-R 

HadGEM2-AO 
HadGEM2-CC 
HadGEM2-ES 

INM-CM4 
IPSL-CM5A-LR 
IPSL-CM5A-MR 
IPSL-CM5B-LR 

MIROC-ESM-CHEM 
MIROC-ESM 

MIROC5 
MPI-ESM-LR 
MPI-ESM-MR 
MRI-CGCM3 
MRI-ESM1 

NorESM1-M* 
NorESM1-ME 

Table 2. Single-model initial-condition large ensemble (SMILE) simulations used in the 
dissertation. 

Modelling 
center 

Model version Abbreviation Number of 
members 

Time 
period 

Reference 

CCCma CanESM2 CanESM-LE 50 1950-2080 Kirchmeier-Young 
et al. (2017) 

CSIRO MK3.6 CSIRO-LE 30 1950-2080 Jeffrey et al. (2013) 

GFDL ESM2M GFDL_ESM2M
-LE 

30 1920-2080 Rodgers et al. 
(2015) 

MPI MPI-ESM-LR MPI-GE 100 1850-2099 Maher et al. (2019) 

NCAR CESM1 CESM-LE 40 1920-2080 Kay et al. (2015) 

NCAR CESM2*3 CESM2-LE 100 1850-2100 Rodgers et al. 
(2021) 

SMHI/KNMI EC-EARTH EC_EARTH-LE 16 1850-2080 Hazeleger et al. 
(2010) 

 
3 *CESM2-LE is only used in Section 3.3 due its relatively recent release (2021 October). 
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2.17 Rank histogram to assess the performance of an ensemble 

Additionally, to assess the performance of an ensemble as a whole, I apply the rank 

histogram on year-to-year seasonal (JJA and DJF) averaged HISTALP and simulated data 

(Talagrand et al. 1997; Annan and Hargreaves 2010; Maher et al. 2019) for the two SMILEs 

with sufficiently long historical simulations (MPI-GE and EC_EARTH-LE) and for the 

CMIP5 ensemble. To do so, let us consider an ensemble with 𝑛 members and initially let 

the 𝑟𝑎𝑛𝑘 = 1. At each time-step (1861-2005) I count the number of members of a given 

ensemble that are greater than the observed value at that time-step, which can be between 

𝑐𝑜𝑢𝑛𝑡 = 0	and 𝑐𝑜𝑢𝑛𝑡 = 𝑛. If 𝑐𝑜𝑢𝑛𝑡 = 0, then the 𝑟𝑎𝑛𝑘 = 1, or if 𝑐𝑜𝑢𝑛𝑡 = 𝑛, then the 

𝑟𝑎𝑛𝑘 = 𝑛 + 1, else the 𝑟𝑎𝑛𝑘 = 𝑐𝑜𝑢𝑛𝑡. I plot the histogram of the ranks and check for 

consistency with uniformity based on a chi-squared test (Annan and Hargreaves 2010). If 

the ensemble underestimates the observed variability, then observations will frequently lie 

close to, or outside the edges of the ensemble resulting in a u‐shaped rank histogram, while 

a well performing ensemble would yield a flat rank histogram.  
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3 RESULTS AND DISCUSSION 

3.1 An internal atmospheric process determining summertime sea-ice melting 
in the next three decades and its representation in climate models 

This section is based on Topál et. al (2020a) addressing A1. 

In Section 1.1 I highlighted that although internal variability has been 

acknowledged to play an important role in regulating sea-ice decadal variability in the past 

(Day et al, 2012; Notz and Marotzke, 2012; Zhang, 2015; England et al, 2019), its relative 

contribution to the total sea-ice change and how models simulate those processes are still 

unclear. I was also curious how the interaction between summertime atmospheric and sea-

ice changes observed over the historical record behaves under future global warming 

scenarios. With this I hope to contribute to lessening uncertainties regarding projections of 

Arctic sea-ice melting in the upcoming decades. Recent studies showed that atmosphere-

sea-ice interactions share similar coupling mechanisms on year-to-year and low-frequency 

timescales in observations (Ding et al, 2017;2019), hence here I focus the analysis on both 

year-to-year (using correlation analyses in Section 3.1.1) and low-frequency (using the 

fast-minus-slow composite method in Section 3.1.2) timescales. 

Preceding Topál et al. (2020a), studies had not yet assessed atmospheric 

circulation driven sea-ice changes in a comprehensive modelling framework including pre-

industrial, historical and future simulations of both individual CMIP-class models and 

SMILEs. I further increased models’ diversity by applying a complementary way to explore 

models’ internal variability – in addition to a total of five large ensembles – and utilized a 

pseudo-ensemble method (Section 2.7; Rosenblum and Eisenmann, 2017, Ding et al, 2019) 

focusing on the pre-industrial control simulations from CMIP5. By comparing the five 

large ensembles with 31 long (>200 years of integration) control simulations from CMIP5, 
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the aim was to search for common features of local and remote atmospheric drivers of 

internal sea-ice variability in the pre-industrial, historical and future simulations. 

3.1.1 September sea ice changes in the historical and future warming scenarios 

First, I study the interannual variability (Figure 3.1-1a-g) and the long-term trends 

(Figure 3.1-1h) in the September total SIA index (as defined in Section 2.3) in observations 

and model simulations over the instrumental era (1979-2018). The observed prominent rate 

of melting and interdecadal variability are not well captured in any of the single-model or 

the CMIP5 multi-model ensemble mean simulations (Figure 3.1-1a; Baxter et al, 2019). 

This readily – yet unsurprisingly – indicates that anthropogenic forcing alone cannot 

explain the observed total year-to-year variability in the SIA time series and indicates a role 

for internal variability. Furthermore, the large decline seen in the observed record between 

1979 and 2012 lies out of 1.5×interquartile interval (IQI) of four SMILE simulations’ 

spread, except for the GFDL-LE, which shows extensive melting (Figure 3.1-1h). Sources 

for this underestimation may be rooted in a lower sea ice sensitivity (Rosenblum and 

Eisenman, 2017; Notz and Stroeve, 2016) of most current climate models or other processes 

inherent to the climate dynamics, part of which is the subject of the present Section. 

I find that the CMIP5 ensemble mean relatively well represents the average of the 

other SMILE’s sea-ice conditions on the historical timeframe, however after the early 2010s 

four out of five SMILEs (except for the CSIRO-LE) start to melt sea-ice considerable faster 

than the CMIP5 mean. Out of the five model ensembles, the GFDL-LE and the CanESM-

LE indicate the fastest sea-ice retreat since 1979 with ice-free conditions (<106 km2) in the 

near future, while the MPI-GE and the CSIRO-LE mean simulations show more moderate 

melting (Figure 3.1-1a). The rate of summer sea ice melt in the CESM-LE accelerates after 

2012 picturing a seasonally ice-free Arctic Ocean in the model within the next three decades 

(Screen and Deser, 2019). 



	
 

38	

After having taken a look at the area-averaged SIA change (Figure 3.1-1), in Figure 

3.1-2 I demonstrate September sea-ice spatial melting rates in observations (Figure 3.1-2a), 

in the mean of the 4 SMILE’s ensemble mean (excluding CSIRO-LE, Figure 3.1-2b), in the 

mean of 31 CMIP5 (Figure 3.1-2c) and in each of the five SMILE’s historical (Figure 3.1-

2d-h) and future (Figure 3.1-2i-m) ensemble mean simulations. In general, on the historical 

timeframe the mean of four SMILE and the 31 CMIP5 mean model simulations share the 

observed sea-ice melting spatial pattern, albeit with some differences in the melting trend 

magnitudes (Figure 3.1-2b-c). As I will show below, although each model exhibits different 

total SIA variability, the coupling patterns of SIA with the atmosphere from year-to-year are 

very similar, indicating that the models’ bias in simulating the mean SIA is not critical to 

the determination of the coupling of the atmosphere to sea ice, which is mainly associated 

with SIA anomalies. This finding is consistent with the results based on the composites that 

are focused on low-frequency sea-ice variability, however, it seems to be contingent upon 

simulating the real summer mean state relatively well. For this reason, I excluded the 

CSIRO-LE from the multi-model SMILE mean when focusing on the average response of 

the different SMILEs to anthropogenic forcing.  
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FIG. 3.1-1. Interannual September total sea-ice area variability in observations and model 
simulations. (a) Time evolution of the observed (1979-2017) (purple), the multi-model ensemble 
mean of CMIP5 models (grey) and the forced model component of 5 SMILE simulations (ensemble 
mean) September total sea-ice area (SIA) indices (1979-2080) as indicated in the legend (unit: 
million km2). Also shown: (b)-(f) time evolution of the ensemble mean (thick solid line), the slow 
(thin solid line) and fast (dashed line) groups (based on 15% of the total ensemble members) for (b) 
MPI-GE, (c) CanESM-LE, (d) CESM-LE, (e) CSIRO-LE and (f) GFDL-LE and (g) 31 CMIP5 
model SIA indices (thin grey lines) and the multi-model ensemble mean (thick grey line). In (h) Box-
Whiskers of September total SIA linear trends (1979-2012) in the 5 SMILE simulations (indicated 
below the x-axis) and the observed trend (red dashed line: -0.95×106 km2 decade-1) is shown. The 
boxes (h) indicate the interquartile interval (IQI), the whiskers extend up from the top of the box to 
the largest value less than or equal to 1.5 times the IQI and down from the bottom of the box to the 
smallest value that is larger than 1.5 times the IQI. Values outside this range are considered to be 
outliers and are indicated by crosses. The × shows the mean and the horizontal orange line the 
median (Kovacs et al. 2012). This Figure is adopted from Topál et al. (2020). 
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FIG. 3.1-2. Spatial patterns of the linear change rate (% decade-1) in September sea-ice area 
over 1979-2012 and 2020-2050. Linear trend of September sea-ice area in: (a) observations 
(NSIDC), (b) the mean (denoted with < >) of the four SMILE’s ensemble mean historical+RCP8.5 
simulations (excluding CSIRO-LE) and (c) the mean of 31 CMIP5 historical+RCP8.5 simulations 
for 1979-2012. Also shown: (d)-(m) the same as (a)-(c) but (d)-(h) for the 5 individual SMILE’s 
ensemble mean simulations for 1979-2012 and (i)-(m) for 2020-2050 based on the RCP8.5 scenario. 
This Figure is adopted from Topál et al. (2020a). 

3.1.2 Year-to-year atmosphere-sea ice interactions 

Observations reveal a recent intensification of an anticyclonic circulation anomaly 

over the Arctic Ocean, which has warmed and moistened the lower atmosphere resulting 

in an increase in downwelling longwave radiation (Ding et al. 2019). To better illustrate 

sea-ice melt anomalies associated with atmospheric circulation changes on the year-to-year 

timescales, I first computed Pearson correlation between linearly detrended JJA Z200, 

zonal mean geopotential height (Z) and temperature (T) and linearly detrended September 

total SIA index in ERA-Interim (Section 2.5; Figure 3.1-3a-c), in the five model ensembles 

and in 31 CMIP5 models for 1979-2012. Correlations had first been computed in each of 

the ensemble members then averaged over the whole given ensemble. By averaging the 
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four correlation maps belonging to each of the four large ensemble simulations (Figure 3.1-

3d-f), I obtained an overall picture of how models capture the observed Arctic atmosphere-

sea ice interactions on interannual timescales. Similarly, I average the 31 correlation maps 

derived from each of the individual CMIP5 model historical+RCP8.5 runs (Figure 3.1-3g-

i). I also show correlations between Arctic area averaged (north of 60°N) JJA Z200 and 

total September total SIA index for the 31 CMIP5 multi-model and five single-model 

ensembles’ individual members (Figure 3.1-3j). 

The inverse relationship between September total SIA index and both JJA upper-

level geopotential height and lower-to-mid-tropospheric temperature is seen in both 

observations and the CMIP5 multi-model or single-model ensemble mean simulations 

(Figure 3.1-3). However, observations reveal stronger interannual coupling between sea ice 

and both upper-level geopotential heights (r = -0.65 vs. r = -0.3) and lower-tropospheric 

temperatures (r = -0.75 vs. r = -0.5) than the models (Figure 3.1-3). The underestimated 

sea-ice-atmosphere correlations’ magnitudes are especially profound in the CSIRO-LE and 

the CanESM-LE, which is in line with the lack of a correctly resembled summer mean sea 

ice state (Figure 3.1-2g) or melting spatial pattern (Figure 3.1-2e,g) in those models. 

Nonetheless, the SMILEs show improvements in capturing the observed interactions 

relative to the CMIP5 ensemble and the CESM-LE appears the best in resembling the 

observed correlation. Overall, both the perturbed initial condition and CMIP5 models 

capture the observed interannual coupling of Arctic summertime circulation and September 

sea-ice variability but with weaker magnitudes and with a somewhat different horizontal 

Z200 and vertical height/temperature profiles, which is an important limitation common to 

all the models (Figure 3.1-3). Hence, this suggests that simulated sea-ice appears to be less 

sensitive to changes in the atmosphere than observed in the past 40 years in line with 

previous studies (Ding et al, 2017;2019; Baxter et al. 2019). 
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FIG. 3.1-3. Interannual coupling between sea-ice and overlying atmospheric circulation. Linear 
correlation of: (a) JJA Z200, (b) zonal mean geopotential height (height) and (c) temperature (temp) 
with September total sea ice area (SIA) index in ERA-I reanalysis for 1979-2012 (contoured values 
are significant at 95% confidence level). Correlation of (d) JJA Z200, (e) zonal mean geopotential 
height and (f) zonal mean temperature with September total SIA index for 1979-2012 averaged over 
four SMILE’s historical+RCP8.5 runs (correlations are computed as the mean (denoted with < >) of 
the four correlation maps (excluding CSIRO-LE) each of which is constructed as first computing 
correlation in each of the members of a given single-model LE and then averaging over the whole 
given SMILE). Correlation of (g) JJA Z200, (h) zonal mean geopotential height and (i) zonal mean 
temperature with September total SIA index for 1979-2012 averaged (denoted with < >) over 31 
CMIP5 models’ historical+RCP8.5 runs (correlations are first computed in each of 31 models then 
the 31 correlation patterns are averaged to construct a 31-member multi-model ensemble). Contours 
on (d)-(i) do not represent significance as I do not account for the significance of the averaged 
correlation maps. (j) Correlation of Arctic area averaged (60-90°N; 0-359°E) JJA Z200 and 
September total SIA index in each of the members of the five SMILE simulations: The boxes (h) 
indicate the interquartile interval (IQI), the whiskers extend up from the top of the box to the largest 
value less than or equal to 1.5 times the IQI and down from the bottom of the box to the smallest 
value that is larger than 1.5 times the IQI. Values outside this range are considered to be outliers and 
are indicated by crosses. The × shows the mean and the horizontal orange line the median (Kovacs 
et al. 2012). The red dashed line indicates the ERA-I correlation value (r = –0.58). All variables are 
linearly detrended before calculating correlations. This Figure is adopted from Topál et al. (2020a). 
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3.1.3 Low-frequency atmosphere-sea ice coupling from 1979 to 2012 

Ding et al. (2019) showed evidence (using only the CESM-LE) that a similar 

physical mechanism dominates atmosphere-sea-ice interactions on low-frequency 

timescales as in interannual timescales. The Z200, zonal mean geopotential height (Z) and 

zonal mean temperature (T) fast-minus-slow composites (Section 2.5) reflect the coupling 

between trends in the atmospheric variables and sea-ice. Therefore, next I compare the 

composite trend patterns to the ones obtained previously (Section 3.1.2) with correlation 

analysis and use the similar features of the two to assume an alike physical mechanism over 

the two timescales. 

The observed circulation trend pattern (Figure 3.1-4a-c) is reproduced in the mean 

of four SMILE simulations’ historical fast-minus-slow composites (i.e., internal variability; 

Figure 3.1-4e-g) rather well, in contrast to the linear trend patterns derived from the 

ensemble mean (forced component) simulations, which show uniform height rise and 

warming in the Arctic without any regional anticyclone-driven features (Figure 3.1-4i-k). 

Note that the composite trend magnitudes (Figure 3.1-4e-g) are markedly weaker than the 

observed trend magnitudes (Figure 3.1-4a-c) suggesting that internal atmospheric 

variability may play a key role in the observed summer circulation changes, however 

models exhibit limitations in fully capturing the magnitude of the internal atmospheric 

process. Because the spatial patterns of changes in the atmospheric variables on the low-

frequency timescales (Figure 3.1-4e-g) strongly resemble the ones we have seen in the 

atmosphere-sea ice correlation maps (Figure 3.1-3), the weaker composite magnitudes can 

be related to the tendency for models to underestimate atmosphere-sea ice correlations 

(Figure 3.1-3) relative to observations. 
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FIG. 3.1-4. Low-frequency coupling between September sea-ice variability and overlying 
atmospheric circulation in ERA-I and SMILEs. Observed (ERA-Interim Reanalysis/NSIDC) (a) 
Z200, (b) zonal mean geopotential height (height), (c) zonal mean temperature (temp) and (d) 
September sea ice area linear trends for 1979-2012. Also shown: (e) Z200, (f) zonal mean 
geopotential height, (g) zonal mean temperature and (h) September sea ice area fast-minus-slow 
composite trends and the ensemble mean (i) Z200, (j) zonal mean geopotential height, (k) zonal 
mean temperature and (l) September sea ice area trends averaged over the 4 SMILE 
historical+RCP8.5 experiments for 1979-2012 (excluding CSIRO-LE the mean of four Z200, height, 
temperature and sea ice either fast-minus-slow composite or ensemble mean (forced) trends are 
denoted with < >). Note, the colourbar differences between (e)-(g) the composite and (i)-(k) the 
forced or (a)-(c) observed trend magnitudes. This Figure is adopted from Topál et al. (2020a) 

For further investigation let us compare the mean of four SMILE’s fast-minus-slow 

composite of September SIA (Figure 3.1-4h) to the forced component (Figure 3.1-4l). 

Notice that the mean of the four SMILE simulations’ Z or T composite trend magnitudes 

are three-to-four times smaller than the corresponding forced component magnitudes 

(Figure 3.1-5e-g vs. Figure 3.1-5i-k), however the difference between the internal and the 

forced sea-ice melting pattern magnitudes or spatial distributions is less pronounced. 

Hence, the prominent difference between internal and forced atmospheric trend magnitudes 

does not yield large differences between forced and internal sea-ice melting rates, which 

further emphasizes the necessity to search for associated atmospheric changes to 
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understand the underlying mechanism responsible for the melting. I present such evidence 

in 31 CMIP5 pre-industrial control simulations’ composite patterns for 1979-2012 in 

Figure 3.1-5. The same patterns representing the low-frequency atmosphere-sea ice 

coupling are reproduced in the pseudo-ensemble of 31 CMIP5 pre-industrial runs without 

the presence of anthropogenic forcing (Figure 3.1-5). 

 
FIG. 3.1-5. Low-frequency coupling between September sea-ice variability and overlying 
atmospheric circulation in pre-industrial simulations from CMIP5. The mean (denoted with < 
>) of fast-minus-slow (a) Z200, (b) zonal mean geopotential height (height), (c) zonal mean 
temperature (temp) and (d) September sea ice area composites constructed using each 34-yr long 
periods of long pre-industrial control integration of 31 individual CMIP5 models aka. the pseudo-
ensemble method (see Section 2.7). This Figure is adopted from Topál et al. (2020a) 

With the qualitative analysis of historical and pre-industrial fast-minus-slow 

composites in the various model experiments robust evidence was shown that the regional 

barotropic height increase over the Arctic in summer – favouring adiabatic warming and 

moistening of the lower troposphere – also dominates summer sea ice variability on low-

frequency timescales in both the real- and pseudo-ensemble simulations (Figures 3.1-4 and 

3.1-5). Our results further support previous findings (Wernli and Papritz 2018) that this 

internal atmospheric process is a contributor to sea-ice melt across different model 

environments (Ding et al. 2019). I also draw attention to the fact that current climate models 

possibly underestimate the strength of atmosphere-sea-ice coupling relative to the observed 

one in ERA-I on both year-to-year and low-frequency timescales. The weaker year-to-year 

coupling of sea-ice with the atmosphere (Figures 3.1-3 and 3.1-4) may indicate a weaker 

coupling mechanism in the trend-related composites as well. In ERA-I the maximum JJA 

Z200 (SAT) change over 1979-2012 in the Arctic is 26 m decade-1 (0.6 °C decade-1), while 
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models show only 4-7 m decade-1 (0.12°C decade-1) in the fast-minus-slow composites. 

The relative role of the internal component, therefore, needs further estimation (Roach and 

Blanchard-Wrigglesworth 2022), however these results indicate that models fail to 

replicate the full strength of the observed atmosphere-sea ice connection (Topál et al. 

2020a). 

3.1.4 Low-frequency atmosphere-sea ice coupling from 2020 to 2050 

How this atmospheric process, identified in observations and historical/pre-

industrial model simulations, will behave in the future has so far been unaddressed in the 

literature. Therefore, I now evaluate the fast-minus-slow composites in all the available 

future scenario runs of the five large ensembles for 2020-2050. 

In general, the mean of the fast-minus-slow composites corresponding to the four 

models’ (excluding the CSIRO-LE) RCP8.5 scenarios (Figure 3.1-6a-c), unlike the forced 

model component linear trends (Figure 3.1-6e-g), are reminiscent of the atmospheric 

structure that dominates sea-ice variability on interannual to interdecadal timescales in 

observations, historical and pre-industrial model simulations. Similar to the historical 

period, all individual models show high pressure in the Arctic upper troposphere along with 

surface warming concomitant to sea-ice loss (Figure 3.1-6). The composite trend 

magnitudes are comparable to the small historical and pre-industrial composite magnitudes 

(relative to the observed trends). The small magnitudes seen in the future fast-minus-slow 

composites (Figure 3.1-6) can also be linked with the underestimated atmosphere-sea ice 

interannual coupling (Figure 3) rooted in the models’ physics. Examining the mean of 4 

SMILE’s September SIA composites we can also see that future sea-ice melt occurs over 

the Arctic Ocean, north of Greenland and Canada in the internal component reminiscent of 

the ensemble mean SIA trends (forced component) (Figure 63.1-d,h). Despite minor 

differences in the magnitudes and spatial patterns of sea-ice melt between the forced and 
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internal sea-ice trend components (Figure 3.1-6d vs. h) the atmospheric circulation patterns 

differ considerably (Figure 3.1-6a-c vs. e-g). Also, while models show discernibly more 

sea-ice melt during 2020-2050 compared to 1979-2012 (Figure 3.1-2), the differences in 

the magnitude of sea-ice associated atmospheric changes are not so pronounced between 

the two periods (Figures 3.1-4 and 3.1-6). This raises concerns about the accuracy of the 

modelled sea-ice sensitivity to atmospheric circulation driven changes compared with its 

response to anthropogenic forcing. 

 
FIG. 3.1-6. Future (a) Z200, (b) zonal mean geopotential height (height), (c) zonal mean temperature 
(temp) and (d) September sea ice area (SIA) fast-minus-slow composite trends and the ensemble 
mean (e) Z200, (f) zonal mean geopotential height, (g) zonal mean temperature and (h) September 
sea ice area trends averaged over four large ensembles’ RCP8.5 experiments for 2020-2050 
(excluding CSIRO-LE the mean of each of the four Z200, height, temp and SIA either fast-minus-
slow composite or ensemble mean (forced) trends are denoted with < >). Note, the colourbar 
differences between (a)-(d) the composite and (e)-(h) the forced trend magnitudes. This Figure is 
adopted from Topál et al. (2020a). 

The presented analyses, however, were solely focused on reaching a qualitative 

understanding of internal drivers of sea-ice loss across different model environments, thus, 

the relative contribution of internal variability remains an open question (and to be 

addressed further on in Sections 3.2 and 3.3) in light of limited model performance. 

Because of the similarities between the atmosphere-sea-ice interactions seen on year-to-

year and low-frequency timescales, it is reasonable to assume that the underestimated year-

to-year coupling has an impact on the low-frequency focused composite calculations as 
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well, likely contributing to the consistently weak magnitudes captured in the fast-minus-

slow composites. Model limitations in simulating wind-driven mechanisms (Hofer et al. 

2019) or moisture and cloud variability (Huang et al, 2019) could be sources of biases in 

replicating the observed atmosphere-sea ice coupling. I also note that in models the local 

Arctic atmosphere-sea ice coupling still exists without prominent remote tropical forcing 

(see further details in Topál et al. 2020a) although the magnitude of the coupling is weaker. 

This indicates that the generation of the local coupling could also be due to local feedback. 

Further research toward identifying the relative role of the local and remote forcing 

mechanisms in the observed atmosphere-sea-ice interactions is needed. 

Although Olonsheck et al. (2019) also emphasized that atmospheric processes 

dominate Arctic sea-ice variability, I cannot rule out the role of the heat content change in 

the ocean (Steele et al, 2008;2010; Zhang et al, 2013). Limitations of our methodology can 

also leave undetected variability belonging to either atmospheric or oceanic processes, 

since the fast-minus-slow method relies on a subjective choice of ensemble members 

belonging to the fast and slow groups. I am also aware that there is no guarantee that the 

strength of the teleconnections remains constant in the future under high emission scenarios 

(Herein et al, 2016;2017; Tél et al, 2019), therefore non-linear, higher order processes may 

also play a significant role (Haszpra et al, 2020a). 

In what follows, I will further guide the reader to reach a better understanding of 

the relative importance of internal atmospheric variability in regulating Arctic cryosphere 

changes with a special focus on the GrIS. Others (Ding et al. 2022; Baxter and Ding, 2022; 

Li et al. 2022) have continued the line of thinking presented above (Section 3.1) regarding 

sea-ice and Arctic Ocean changes associated with upper-level wind anomalies in the 

Arctic. I led the evaluation of a new, comprehensive modelling framework (the so-called 

nudging simulations) in terms of the mass balance of the GrIS. 
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3.2 Discrepancies between observations and climate models of large-scale 
wind-driven Greenland melt impact sea-level rise projections 

This Section is based on Topál et al. (2022) addressing A2 and A3. 

Given the considerations in Section 1.2, the separation of the physical mechanisms 

behind GrIS surface warming into adiabatic (causing vertically non-uniform warming) and 

diabatic (causing vertically-uniform warming) processes offers the potential for not only 

showcasing potentially divergent physical mechanisms behind observed and modelled 

GrIS warming, but also for quantifying the contribution of large-scale winds to accelerating 

sea-level rise. This is only possible by taking a conceptually different, dynamical approach 

contrary to previous studies that have mainly applied diagnostic and statistical approaches 

to observations and model simulations forced by constant or varying greenhouse gases over 

the past 40 to 150 years when examining the effects of atmospheric circulation on GrIS 

melt (Delhasse et al. 2018; Bevis et al. 2019; Hanna et al. 2013; Sherman et al. 2020). In 

this Section I present results based on purpose-designed “wind nudging” model 

experiments, which helps to quantify the role of large-scale winds – dominantly 

representing internal variability, see discussion on caveats below – in enhancing the rate of 

sea-level rise by accelerating Greenland summer surface melt. 

To distinguish between the two dominant mechanisms of observed GrIS summer 

warming as manifested in the circulation-driven adiabatic component and the radiative 

forcing-induced diabatic warming, a two-step approach is taken in a dynamical modelling 

framewor. First, the fully-coupled Community Earth System Model 1.2 (nominal 1 degree 

resolution) and second, the Community Ice Sheet Model (CISM) Glimmer with a higher 

spatial resolution (~5 km) was used to conduct atmospheric wind-nudging experiments 

(from ERA5) without interaction from time-varying anthropogenic forcing. To do so, 

external forcing (greenhouse gases, aerosols, solar) is set to constant values at the level of 
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the year 2000 (367 ppm), which roughly represent the climatological mean values over 

1980-2018 (see further details in Sections 2.8). 

Since the same model is used to conduct the nudging runs as the SMILE version of 

the CESM1 (CESM-LE), I can also compare our 10-member wind-nudging experiment to 

the CESM-LE. While the winds from ERA5 may already contain fingerprints of 

anthropogenic forcing – through proportional relationship between temperature and 

geopotential heights –, this comparison reveals the importance of observed winds in 

causing the recent acceleration of GrIS melt and corresponding increase in the rate of 

barystatic sea-level rise relative to simulated GrIS changes in the ensemble-mean (forced 

response) and the ensemble spread (internal variability) in the CESM-LE. Further, forced 

wind changes might be affected by model structural biases, which complicates the 

quantification of the internal/forced observed wind changes. Therefore, I compare our 

nudging experiment to simulations of 31 CMIP5 models, which is expected to help in 

clarifying whether any structural bias in the CESM-LE may be common across other 

models. In addition, I extend the analysis beyond the observational era by utilizing two 

recently available paleoclimatic proxy data-assimilated reconstructions (paleo-reanalyses) 

in addition to independent Greenland ice core and oceanic coral proxy records spanning 

the past 400 years. These analyses offer the opportunity to derive further insights into the 

persistence and robustness of the observed wind-driven GrIS warming mechanisms during 

periods with much less influence from anthropogenic emissions. By doing so the aim was 

to advance the current understanding of large-scale atmospheric forcing driven GrIS 

surface changes since the early 17th century and contribute to contextualizing uncertainties 

of current model projections of sea-level rise.  
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3.2.1 Observed and modelled summer GrIS melt and overlying circulation changes 

I first describe past changes in GrIS surface conditions using mass balance estimates 

from the Ice Sheet Mass Balance Inter-comparison Exercise (IMBIE; The IMBIE Team 

2020). In addition, I use surface mass balance (SMB, Eq. 2 in Section 2.3) and SAT 

simulations from a widely used and GrIS optimized (Fettweis et al. 2017; Fettweis et al. 

2011; Delhasse et al. 2020) regional climate model, Modéle Atmosphérique Régional, 

(MAR, Section 2.3), which is 6 hourly forced by the ERA5 (Delhasse et al. 2020; Hersbach 

et al. 2020) reanalysis at its boundaries. I also characterize synchronous changes in the 

overlying atmospheric circulation in ERA5 since 1980 alongside increasing GrIS mass loss 

(Hanna et al. 2021; The IMBIE Team 2020). 

Both the satellite-observed rate of annual total mass change (The IMBIE Team 2020) 

and MAR climate model simulations of JJA SAT and SMB anomalies over Greenland show 

substantial interannual variability during the 1980-2018 period (Figure 3.2-1a). Similar 

year-to-year variability is observed with sea surface temperatures (SST) over Baffin Bay 

(60º-80ºN; 50º-70ºW) (rSST;SAT = 0.78 (0.67); rSST;SMB = 0.85 (0.77) for raw (linearly 

detrended) data). This indicates a possible shared driving mechanism behind Greenland 

and proximate ocean surface changes beyond anthropogenic forcing (Figure 3.2-1b). 

Associated changes in atmospheric circulation over the GrIS are revealed by re-creating an 

often used metric – the Greenland Blocking Index (GBI; Hanna et al. 2021; Hanna et al. 

2018; Hanna et al. 2016) – and developing the Greenland Streamfunction Index (GSI, 

Figure 3.2-1c). The GSI is calculated from the ERA5 500hPa streamfunction (Y500) by 

spatially averaging the area-weighted Y500 anomaly field over the GrIS (20-80ºW; 60-

80ºN) in JJA. The GSI is strongly correlated (~0.88) with the GBI in summer, but because 

it reflects the rotational features of large-scale circulation that control the adiabatic 
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warming process in the lower troposphere, it better represents the physical mechanisms 

discussed herein (Section 2.9). 

The ERA5 GSI explains significant part of the interannual variability in MAR 

simulated summer SAT/SMB and Baffin Bay SSTs over 1980-2018, regardless of whether 

the underlying trend is removed or maintained, suggesting that this relationship results 

primarily from internal variability (r2
GSI;SAT = 0.56 (0.46); r2

GSI;SMB = 0.69 (0.61); r2
GSI;SST = 

0.56 (0.53) for raw (linearly detrended) data). The accompanying spatial trends in the MAR 

simulated GrIS SAT (0.446 K decade-1) and circulation – as described by ERA5 500hPa 

geopotential height (Z500; 12-15 m decade-1) and horizontal winds (GSI; 0.844 106 m2 s-1 

decade-1) – show synchronous changes over 1980-2018. Such trends suggest that the 

aforementioned high-pressure-driven adiabatic warming process has likely acted in concert 

with anthropogenic forcing in shaping GrIS climate variability over the past four decades 

(Figure 3.2-1d).  
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FIG. 3.2-1. Observed and simulated circulation-driven GrIS summer surface conditions over 
1980-2018. (a) GrIS spatially-averaged time-series of anomalies in MAR surface air temperature 
(SAT, pink) and surface mass balance (SMB, blue), the ensemble mean SAT from CESM1 large 
ensemble (CESM-LE, black) and the SAT from the wind-nudging experiment (Exp) in CESM1 
(orange) in summer (June-July-August, JJA) as well as the observed annual rate of total GrIS mass 
change (IMBIE) (purple). The grey shading in (a) represents the range of all members’ SAT 
anomalies from the CESM-LE. In (b) ERSSTv5 sea surface temperatures averaged over the Baffin 
Bay (60º-80ºN; 50º-70ºW) (green) is compared with the ones calculated using the CESM-LE mean 
(with black), the spread in CESM-LE (grey shading) and the wind-nudging experiment (Exp, 
orange) for JJA. (c) is same as (b), but for the 500hPa Greenland streamfunction index (GSI, Section 
2.9). In (d), spatial maps of the linear trend in (MAR) SAT (shading), ERSSTv5 SSTs (shading), 
500hPa geopotential height (Z500, contours, unit: m/decade) and 500hPa horizontal winds (arrows) 
in ERA5 and (f) in the wind-nudging experiment (Exp) in JJA for 1980-2018. Panel (e) shows the 
linear trends in GrIS spatially-averaged SAT (first box-and-whiskers plot), the GSI (second box-and-
whiskers plot) and (g) the raw (detrended) correlations between GrIS SAT and GSI in the first 
(second) box-and-whiskers plots as shown with markers corresponding to the legend. The whiskers 
extend to 1.5 times the interquartile-range (IQR) and the median is indicated with an orange 
horizontal line, outliers (that extend 1.5 IQR) with crosses. Hatching in (d) and (f) indicate areas 
with statistically significant linear trends based on the Mann-Kendall test (p<0.05). 

Contrary to the observed synchrony between GrIS surface and overlying 

atmospheric circulation changes, 31 CMIP5 climate models and the 40-member CESM-LE 

also indicate less of an influence from wind-changes on GrIS warming (Figure 3.2-2). It is 

also the case in version 2 of CESM (Noël et al. 2020) and more generally in the CMIP6 

models (Hofer et al. 2020; Delhasse et al. 2018). These findings suggest the possibility that 
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climate models may misrepresent driving mechanisms; hence, to further interpret the 

potential consequences, I describe the results based on the aforementioned wind-nudging 

model experiments. 

 
FIG. 3.2-2. Observed and simulated sensitivity of the Greenland Ice Sheet (GrIS) to large-scale 
atmospheric circulation. (a) Greenland ice sheet (GrIS) surface air temperatures (SAT) in ERA5, 
the 40 member CESM-LE (ensemble mean with thick light blue line) and in 31 CMIP5 models 
(multi-model ensemble mean with thick grey line) between 1980-2018 in June-July-August. (JJA). 
(b) the same for the Greenland Streamfunction Index (GSI) calculated from 500hPa horizontal 
winds, and (c) scatter plot of the trends in the GSI and the GrIS SAT in each member of the CESM-
LE (seagreen triangles; ensemble mean with larger marker), each CMIP5 model (grey markers; 
ensemble mean with larger marker) and in ERA5 (red ‘x’). Note how each CMIP5 and CESM-LE 
members simulate GrIS warming without concomitant changes in their simulated GSI. 

3.2.2 Separating diabatic vs. adiabatic mechanisms driving GrIS melt 

Observationally constraining winds in the CESM1 (i.e., the nudging) results in the 

model closely resembling the interannual variability in ERA5 GSI (Figure 3.2-1c, r = 0.81), 

in MAR GrIS SAT (Figure 3.2-1a, r = 0.84) and in ERSSTv5 Baffin Bay SSTs (Fig. 1b, r 

= 0.64). As for the summertime spatial trend patterns, on average, 53% of observed SAT, 

74% of the Z500 and 35% of the Baffin Bay SST changes between 1980 and 2018 are 

captured in the nudging experiment (Figure 3.2-1d,f). A further comparison between the 
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nudging-run derived GrIS surface conditions and those simulated by each of the CESM-

LE members reinforces the differences between the simulated and observed sensitivity of 

the ice sheet to wind-changes seen in other CMIP models (Hofer et al. 2020; Delhasse et 

al. 2018; Noël et al. 2020) (Figure 3.2-2). I also highlight the contrast between the summer 

GrIS SAT/GSI trends over 1980-2018 in the observations and simulated in individual 

members comprising the CESM-LE, which underestimate the ERA5 GSI trend while 

encompassing the observed SAT trend during the 1980-2018 period (Figure 3.2-1e). 

Furthermore, the correlations between GSI and GrIS spatial averaged SAT are weaker in 

each individual CESM-LE member than in ERA5 (r ~ 0.75), and only three of these 

members exhibit equal or greater correlations compared to the nudging experiment (r  ~0.6) 

(Figure 3.2-1g). 

To account for observed wind changes that may stem from anthropogenic forcing, I 

also examine wind-changes in the CESM-LE mean and in the multi-model mean of 31 

CMIP5 models. Although the CESM-LE (CMIP5) mean GrIS SAT trend is ~90% (~60%) 

of its ERA5 counterpart, the equivalent value for the GSI is only ~10% (~2%). Compared 

to the significant wind changes in ERA5, the year-to-year GSI series (Figures 3.2-1c and 

3.2-2b) show only subtle changes over the 1980-2018 period in both CESM-LE and CMIP5 

ensemble means. These findings are similar to both the weak trend in 500hPa horizontal 

winds in the CESM-LE mean (Figure 3.2-3a) and the uniform geopotential height response 

simulated by other single-model large ensembles (Topál et al. 2020a). While <10% of 

observed wind changes may be affected by anthropogenic forcing, a note of caution is 

warranted as models may also suffer from structural biases that can obstruct a realistic wind 

response to external forcing, and this shortcoming may limit the certainty of calculations 

that are currently available. 
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FIG. 3.2.-3. The forced response of winds and surface temperature over the GrIS in CESM-
LE. Spatial pattern of the linear trends in the 40-member CESM large ensemble mean surface air 
temperature (SAT) and 500hPa horizontal winds (arrows; winduv). 

To further interpret the implications of the lack of circulation changes in models for 

GrIS melt-driven processes, next, I analyze SMB changes, which are directly linked to sea-

level rise. First, I separately assess the surface energy balance (SEB; Eq. 1 in Section 2.1) 

and total precipitation in the nudging simulation, which are the two key SMB components 

(Lenaerts et al. 2019) (Eq. 2 in Section 2.3). Similar to what we have seen for the GrIS 

SAT, imposing observed winds in our model experiment is sufficient to simulate a close 

match with both the summer and annual SEB interannual variabilities (Figure 3.2-4a-b) 

seen in the ERA5 (1980-2018) and the satellite product (CERES-EBAF (Kato et al. 2018), 

2001-2020; Section 2.1). As for interdecadal time scales, the linear trends in the SEB also 

indicate an overall adequate simulation of satellite-observed changes in the nudging 

experiment in JJA (Supplementary Figure 1a-b) and annual means (Supplementary Figure 

1d-e). These results suggest a decisive role for atmospheric circulation in controlling GrIS 

climate variability from an energy balance perspective. However, in line with the above-

demonstrated limitations of the CESM-LE in capturing the circulation-related adiabatic 

component of GrIS melt, all members of the CESM-LE show relatively small year-to-year 
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coupling between SEB and the GSI compared with ERA5 and the nudging simulation 

(Supplementary Figure 2b) and show SEB changes with opposite sign compared with the 

EBAF over 2001-2020 (Supplementary Figure 2c,f,g). As for the total precipitation 

averaged over the GrIS, the nudging experiment performs reasonably well in replicating 

ERA5 summer and annual mean precipitation (Figure 3.2-4c,d). Although the nudging 

experiment seems to overestimate precipitation variability over the GrIS, especially before 

2000 (~2.8 (~1.6) times greater standard deviation between 1980-2000 (2000-2018)), I 

conclude that precipitation is highly sensitive to imposed winds in the nudging run and, 

therefore, in reality. 

 
FIG. 3.2-4. The critical role of circulation in determining observed GrIS surface mass/energy 
balance over 1980-2018 as simulated by the nudging experiment. Comparisons between the 
Greenland spatially-averaged surface energy balance (SEB) anomaly time series in ERA5, EBAF 
satellite product (Section 2.1), the nudging experiment and the CESM-LE (grey shading and black 
line for the ensemble mean) for (a) JJA and (b) for annual means. Comparison between ERA5, the 
nudging experiment and the CESM-LE (grey shading and black line for the ensemble mean) GrIS 
spatially-averaged precipitation for (c) JJA and (d) the annual means. Panel (e) shows the MAR-
simulated GrIS surface  mass balance (SMB) anomalies for JJA along with (f) showing the 
comparison of annual SMB between MAR and the nudging experiment involving CISM-Glimmer. 
In the legends, ‘r()’ indicates the correlation coefficients between the corresponding variable and 
the one in the bracket. 
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To shed light on the contribution of wind-driven circulation directly to SMB 

variability, I analyze nudging experiments with the Glimmer-CISM (Section 2.8.2). The 

resulting Glimmer-CISM annual mean GrIS SMB exhibit similar climatology to the ERA5-

forced MAR simulation, albeit with overestimating the ablation zone melt during the 1980-

2018 period (Supplementary Figure 3). Despite the climatological bias, the nudging 

experiment qualitatively reproduces the observed features of SMB variability of the past 

four decades, as shown by the comparison between the spatially-averaged SMB anomaly 

time-series from our Glimmer-CISM experiment and the ERA5-forced MAR simulation 

(Figure 3.2-4f; r = 0.85; Supplementary Figure 4). Note that I have analysed a similar set 

of nudging-runs within the CESM2, which has an active dynamic ice-sheet model. The 

conclusions on the role of large-scale in driving GrIS SMB variability are valid even with 

a more complex ice-sheet model (not shown). 

3.2.3 Wind-driven GrIS mass loss and sea-level rise acceleration 

We have seen that, alongside anthropogenically-forced diabatic warming, 

atmospheric circulation changes are an important influence on the energy budget, 

precipitation and hence surface mass balance of the ice sheet. Besides the total cumulative 

ice loss from the GrIS, that has led to 10.8 ± 0.9 mm increase in global mean sea-levels 

over the past three decades (The IMBIE Team 2020), an additional key aspect is the 

observed acceleration in the rate of GrIS mass loss (–132.8 Gt yr-1 decade-1) over 1990-

2012 that was a dominant contributor to enhanced sea-level rise (Ablain et al. 2019; Chen 

et al. 2017) (1.2±0.7 mm yr-1 decade-1 over 1993-2017). During 1990-2012, both the ERA5 

and the nudging-derived GSI show concomitant increase, followed by a levelling-off until 

2018 (Figure 3.2-1c), which corresponds with the lack of tropical forcing and a generally 

positive North Atlantic Oscillation phase (and less Greenland blocking) linked to colder 

conditions over Greenland (Hanna et al. 2021; Baxter et al. 2019). Quantifying the 
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contribution of wind-driven circulation to increased GrIS melt and resulting sea-level rise 

over 1990-2012 is crucial to better contextualize not only the misrepresentation of the 

adiabatic/diabatic driving mechanisms in the CESM-LE, but also identify the future 

potential of atmospheric circulation to further amplify as well as to counteract 

anthropogenically-forced GrIS changes. 

Our model experiment suggests that – based on the ratio of observed and the 

nudging-run derived spatial-averaged SAT trends – atmospheric circulation alone explains 

56% (55%) of the observed GrIS SAT (Baffin Bay SST) rise during 1990-2012 (Figure 3.2-

5a-b). Areas located along the west, northwest, and north coasts of Greenland and in the 

north Labrador Sea show the largest contribution from atmospheric circulation towards 

explaining the observed SAT trends. These patterns are in line with the spatial structure of 

the high-pressure anomaly above the ice sheet that favours anomalous moisture fluxes to 

the northwest of the ice sheet (Noël et al. 2019) and subsidence over the west and southwest 

regions (Figure 3.2-5b; Figure 3.2-1d,f). 
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FIG. 3.2-5. The wind-driven acceleration of Greenland ice loss and Baffin Bay upper-ocean 
warming between 1990 and 2012. Linear trends in summer (June-July-August, JJA) (a) ERA5 
surface air temperature (SAT) and ERSSTv5 sea surface temperature (SST), (b) the nudging 
experiment-derived SAT/SST, (c) ORAS5 upper-ocean (0 – 100 m) temperature (zonal mean over 
50ºW-70ºW longitudinal band) and (d) nudging experiment derived upper-ocean (0 – 100 m) 
temperature (zonal mean over 50ºW-70ºW longitudinal band) between 1990-2012. The green 
dashed lines in (c)-(d) indicate the section used to average ocean temperatures shown in Figure 3.2-
6b. Hatching indicates statistically significant (p<0.05) trends. Panel (e) shows the linearly 
detrended annual mean rate of Greenland mass balance anomaly from The IMBIE Team (2020) 
(pink) and the linearly detrended summer Greenland streamfunction index derived from the nudging 
experiment (GSIExp, grey). The residual rate of Greenland mass balance anomaly (blue) based on 
having linearly regressed out the GSIExp (grey) from the annual mean rate of Greenland mass balance 
anomaly (pink) is also shown. The linear trend values in the legend refer to the 1990-2012 period. 
Note that these values differ from those mentioned in the text, because these are obtained after 
having removed the 1980-2018 linear trend from the mass balance time series as a first order 
approximation of anthropogenic forcing. 
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About half of the observed total Greenland ice loss is due to reduced SMB-driven 

meltwater runoff, which we have addressed in the nudging simulations. However, the other 

half is attributable to glacier dynamical imbalance (The IMBIE Team 2020). Since the 

CISM-Glimmer model used in this study is developed to simulate SMB in relatively slow-

flowing regions of the GrIS, rather than fast outlet glacier changes, I statistically assess 

how the melting rates of 260 Greenland outlet glaciers/ice caps (Mouginot et al. 2019) may 

be regulated by overlying wind changes. To do so, I utilize the nudging run-derived GSI 

that explains significant interannual variability over 1980-2018 of 94 glaciers flanking the 

southwest (SW), central west (CW) and northwest (NW) of the island (Figure 3.2-6a; raverage 

= 0.43, with up to rmaximum = 0.6). The underlying trend in the glaciers’ mass balance time 

series, which is a combination of the anthropogenic forcing-induced diabatic warming and 

the wind-driven adiabatic warming, influences the correlations and only 41 glaciers, 

located mostly in the SW, show significant correlations after removing the linear trends 

from the data (raverage = 0.39; rmaximum = 0.48). Similar spatial differences to overlying 

atmospheric circulation was documented in geochemical parameters over the past 

millennium across the GrIS (Hatvani et al. 2022). Based on the nudging simulations, I 

speculate that winds may directly influence Greenland glacier melt in a similar manner as 

SAT and SMB in addition to indirectly, through ocean warming. 
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FIG 3.2-6. Effect of winds on Greenland glaciers and upper-ocean heat content changes. In (a) 
the correlations between the summer GSI and the annual mean rate of mass balance of 260 glaciers 
from Mouginot et al. (2019) during 1980-2018 are shown. Filled circles indicate statistically-
significant correlations (p<0.05) and pink stars denote those glaciers that show significant 
correlations even after detrended. The size of the markers are proportional to the area of the given 
glacier (see legend). Also shown: (b) JJA upper-ocean (0 – 50 m) temperature anomalies and (c) 
surface net heat flux anonmalies (reltive to the 1980-2018 period) from the atmopshere into the 
ocean spatially averaged over 50-70°W 60-77°N between 1990-2012 in ORAS5/ERA5 reanalysis 
(blue) and in the nudging experiment (Exp, gold). 

In an effort to account for Baffin Bay upper-ocean (0-50 m) warming that influences 

air-sea-ice interactions, I utilize the ocean component of the nudging experiment to 

compare upper-ocean temperature trends in the wind-imposed simulation with the ORAS5 

ocean-reanalysis during 1990-2012 (Figure 3.2-5c,d). I find significant upper-ocean 

warming in the wind-nudging simulations over the north Labrador Sea – Baffin Bay area 

(50-70°W; 50-78°N), resembling the vertical cross-section of warming along the west coast 

of Greenland in the reanalysis (Figure 3.2-5c-d). A comparison of the spatially and 

vertically averaged upper-ocean temperature time series (Figure 3.2-6b) in the nudging 

experiment with its reanalysis counterpart reveals that about third of the trend can be 

simulated in our model via the sole imposition of Arctic winds. This warming seems to be 

closely related to the surface net fluxes from the atmosphere into the upper ocean (Qnet; 

Figure 3.2-6c) with a prominent lead-lag relationship developing in early summer Qnet that 
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leads ocean temperatures until September in both the reanalysis and the nudging 

experiment (Figure 3.2-7). These findings suggest that atmospheric circulation plays an 

important role in governing Baffin Bay upper-ocean temperatures. Similar findings have 

recently been shown for other parts of the Arctic Ocean (Li et al. 2022). 

Note that those ocean waters that primarily force Greenland termini retreat tend to 

be situated at the grounding lines of the glaciers (Wood et al. 2021) whose depths extend 

beyond the scope of this study. However, climate models’ inability to simulate observed 

wind-driven circulation over the GrIS likely translates into uncertainties involving the 

simulation of wind-driven Atlantic Water intrusion into the Baffin Bay, which is of 

importance, for example, to the destabilization of GrIS outlet glaciers (Wood et al. 2021; 

Rignot et al. 2012; Holland et al. 2008) and thus warrants future analysis.  
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FIG. 3.2-7. Lead-lag relationships between wind-forcing and upper-ocean temperatures. 
Correlations between the net surface heat flux from the atmopshere into the ocean (Qnet) averaged 
over the Baffin Bay (50-70ºW; 60-77ºN) and upper ocean temperature (zonal mean over 50ºW-70ºW 
longitudinal band) in (a) the ORAS5 reanalysis and (b) in the nudging experiment over 1980-2018. 
Hatcing indicates statistically significant trends (p<0.05). Also shown: lead-lag correlation between 
the net surface heat flux from the atmopshere into the ocean (Qnet) averaged over the Baffin Bay 
(50-70ºW; 60-77ºN) and the upper 50m averaged ocean temperature (zonal mean over 50ºW-70ºW 
longitudinal band) in (c) ERA5/ORAS5 and (d) in the nudging experiment from April to October 
between 1980-2018. The linear trends are removed before correlations are calculated. 

Lastly, motivated by the dynamical understanding of driving mechanisms based on 

the wind-nudging simulations, I statistically estimate the total Greenland ice loss 

acceleration driven by the changes in the GSI and its contribution to the increasing rate of 

sea-level rise. The calculations are only statistical in nature, because, as I have 

demonstrated above, half of the total GrIS ice loss is attributable to glacier imbalance, 

whose spatial scales and underlying dynamics (e.g., calving) are still beyond current 

modeling capacities (even with regional climate models). The summer GSI obtained from 
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the nudging run accounts for about 40% of the interannual variability in the GrIS annual 

mean mass balance (MB; The IMBIE Team 2020) whether or not the underlying trend is 

removed over 1980-2018 (rGSI;MB = -0.67 (-0.62) for raw (linearly detrended) data). Similar 

correlations using detrended and raw data motivates the construction of a simple linear 

regression model to quantify the GSI-driven Greenland ice mass loss acceleration since 

1990. After regressing out the summer GSI time series derived from the nudging 

experiment from the GrIS annual mean rate of mass balance anomaly over 1980-2018 

(Figure 3.2-5e), I find that the GSI contributed ~54% of the GrIS mass loss acceleration 

over 1990-2012 regardless of using linearly detrended or raw data to construct the 

regression model. This indicates that a substantial portion, –71.7 Gt yr-1 decade-1 (out of 

the –132.8 Gt yr-1 decade-1) total ice mass change equalling ~0.2 mm yr-1 decade-1 sea-level 

rise acceleration related to wind-induced adiabatic warming between 1990-2012, which 

holds potential for atmospheric circulation to affect the rate of sea-level rise to a similar 

extent in the coming decades. 

3.2.4 Fingerprints of remote forcing on the GrIS since 1979 

I have discussed challenges in quantifying the relative contributions from 

internal/forced sources behind the observed GrIS ice loss and consequent sea-level rise. I 

follow-on this discussion first by studying the extent to which the local GrIS circulation 

variability is excited by remote forcing, i.e., teleconnections induced by tropical SST 

anomalies. Examining the large-scale picture is important to shed more light on the sources 

of model biases in simulating the local GrIS circulation-surface coupling, since known 

limitations of climate models to replicate tropical-Arctic linkages are likely to play a role 

in the aforementioned model uncertainties (Topál et al. 2020a). Then I assess whether this 

large-scale mechanism is stable beyond the observational era by utilizing paleoclimatic 

proxy-data assimilated model experiments and ice-core/oceanic coral derived temperature 
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proxies over the past 400 years. Through these analyses, I strive to refine the pathway (A2) 

by which large-scale winds impact GrIS melt, particularly during the period before 1850 

under less anthropogenic forcing relative to present day, as a next step to contextualize the 

model sensitivity issues. 

In an effort to address these complexities I utilize that besides describing the local 

atmosphere-GrIS coupling, the GSI inherently contains information from the rotational 

feature of large-scale atmospheric circulation. This enables to study how the local 

atmospheric circulation variability may be excited by forcing from the lower latitudes. The 

linearly detrended correlations between the GSI and global Z500 and SST, despite 

differences in the magnitudes between the JJA and annual mean correlations (Figure 3.2-

8), show features of a teleconnection linking tropical Pacific cold SST anomalies with 

anomalous Greenland warming as seen in previous studies (Ding et al. 2014; Baxter et al. 

2019; Ballinger et al. 2021). Using maximum covariance analysis (MCA, Section 2.6), I 

reveal the primary internal coupled mode of variability between Z500 and SST. The 

MCA(1) 4  spatial patterns of Z500 (Figure 3.2-9a) and SST (Figure 3.2-9b) exhibit a 

hemispheric teleconnection bridging atmospheric circulation variability over the GrIS with 

opposite-sign (negative Pacific Decadal Oscillation (PDO)-like) changes in the tropical 

Pacific, and same-sign (positive Atlantic Multidecadal Oscillation (AMO)-like) changes in 

the tropical Atlantic. This mode explains ~55% covariability between large-scale 

circulation and SST (Figure 3.2-9c) and shows robust correspondence with the observed 

rate of Greenland ice loss especially between 1990-2012 (r ~ 0.6). The regression of 

200hPa streamfunction onto the Z500 expansion coefficient time series (Figure 3.2-9a) 

resembles the Pacific-Arctic (PARC) teleconnection (Baxter et al. 2019) and hence 

indicates the key role of tropical forcing in forming the mid-tropospheric high-pressure 

 
4 MCA(n) refers to the nth leading mode. 
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pattern over Greenland through the propagation of stationary Rossby-waves (Ding et al. 

2014) (Figure 3.2-9a). This result, alongside a regression of Z500 time series on the year-

to-year variability of 200hPa horizontal winds and GrIS SAT in Figure 3.2-9d support the 

idea that a substantial portion of the observed local GrIS high-pressure is likely driven by 

remote tropical forcing, however the quantification remains uncertain. 

 
FIG. 3.2-8. Year-to-year connection between the GSI and global atmospheric circulation and 
SST. Correlation between detrended 500hPa Greenland streamfunction index (GSI, Section 2.9) and 
detrended sea surface temperatures (SST) in (a) summer (June-July-August, JJA) and in (b) the 
annual means using ERA5 and ERSSTv5 for 1980-2018. Hatching indicates statistically-significant 
correlations (p<0.05). 
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FIG. 3.2-9. The contribution of remote forcing to high-pressure driven adiabatic processes 
over the GrIS during 1980-2018. Spatial patterns corresponding to the leading internal mode of 
covariability between Northern Hemisphere annual mean (a) ERA5 500hPa geopotential height 
(Z500) and (b) sea surface temperatures (ERSSTv5, SST) (30°S-55°N). The corresponding 
expansion coefficients (EC, shown as units of standard deviations) for Z500 (blue) and SST 
(ERSSTv5, orange) as revealed by maximum covariance analysis (MCA, Section 2.6) also shown 
in (c). The shared fraction of covariance (SFC) is 54.6% and the correlation between the ECs is 
r=0.77. The area-weighted global mean is removed before MCA from Z500 and the 60ºS-60ºN mean 
from SST. Panel (c) also shows the spatially-averaged GrIS mass balance (MB) anomaly time-series 
from The IMBIE Team (2020) (purple) and the correlation between the MB and the Z500/SST 
expansion coefficients over 1980-2018 in the legend (with brackets showing correlations over 1990-
2012). In (a), the regression of Z500 EC(1) onto the 200hPa streamfunction (Y200) calculated from 
ERA5 is shown with contours overlaid (unit: 106m2s-1). Panel (d) shows the regression of Z500 
EC(1) onto the MAR simulated surface air temperatures (SAT) (shading) and ERA5 200hPa 
horizontal winds (blue arrows) for the GrIS.  
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3.2.5 Tropical forcing on the GrIS since 1603 AD 

Recent studies have raised concerns about non-stationary features of tropical-Arctic 

teleconnections (Bonan and Blanchard-Wrigglesworth 2020) that cast doubt on the 

reliability of using this framework to guide future climate projections over Greenland. 

Therefore, I address this point by evaluating the observed teleconnection’s impact on GrIS 

warming over centennial time scales using the Ensemble Kalman Fitting 400 (EKF400) 

paleo-reanalysis version 2 (Valler et al. 2021) spanning 1603-2002 AD. This dataset was 

created by assimilating early instrumental temperature, surface pressure and precipitation 

observations, temperature and moisture sensitive proxies from tree-ring measurements into 

the ECHAM5.3 atmospheric general circulation model (see also Section 2.2 for details). 

Having repeated the MCA between Z500 and SST, the leading internal SST-Z500 

coupled mode in the EKF400 explains nearly the same (~50%) covariance as the PARC 

and features strikingly similar spatial patterns to their observed counterparts (Figure 3.2-

10a-b vs. Figure 3.2-9a-b). To further emphasize the dynamical linkage between the tropics 

and Greenland, I regress the 200hPa streamfunction from EKF400 onto the Z500 expansion 

coefficient time series. The resulting regression map closely resembles the one seen using 

the ERA5 reanalysis (Figure 3.2-10a vs. Figure 3.2-9a). Furthermore, the significant 

correlations between the SST MCA(1) time series and the PDO* (r ~ -0.9, Section 2.2) or 

the AMO* (r ~ 0.4, Section 2.2) indices calculated from the EKF400 as well as an Atlantic 

Meridional Overturning Circulation (AMOC) index reconstruction (Rahmstorf et al. 2015) 

(r ~ 0.4) altogether suggest that the notable multidecadal low-frequency variabilities seen 

in the Z500 and SST MCA(1) time series are analogous to these well-known indices of 

multidecadal climate variability. In addition, 15 out of the 30 ice core 𝛿 18O records 

available across the ice sheet, and 10 out of 33 available oceanic coral 𝛿18O records from 
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PAGES2k Consortium (2017) show statistically significant correlations with the EKF400-

derived GSI (triangles in Figure 3.2-10c-d; Supplementary Table 1). 

These observational constraints along with the regression maps of the Z500 

expansion coefficient time series onto the SAT and 200hPa horizontal winds over the ice 

sheet (Figure 3.2-10d) closely match the circulation-surface coupling seen in the 

observations, and together bolster confidence that the observed large-scale wind-driven 

Greenland changes are part of a mode of large-scale variability that is consistent over at 

least the past 400 years. To verify the EKF400 results, I repeated the MCA using the Last 

Millennium Reanalysis (Tardiff et al. 2019). Although discrepancies exist between the two 

paleo-reanalyses, they altogether support the idea that the significant enhancement of GrIS 

melting between 1990-2012 and associated acceleration in the rate of sea-level rise have 

been a manifestation of low-frequency variability in the climate system, predominantly 

arising from natural variability (Ding et al. 2017; Baxter et al. 2019). 
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FIG. 3.2-10. The temporal consistency of the observed teleconnection influencing Greenland 
over AD 1602-2003 as simulated by the EKF400. Spatial patterns corresponding to the leading 
internal mode of co-variability between Northern Hemisphere annual mean (a) 500 hPa geopotential 
height (Z500) and (b) sea surface temperatures (SST) (30°S-55°N) and (c) the corresponding 
expansion coefficients (EC, shown as units of standard deviations) for Z500 (blue) and SST (orange) 
as revealed by maximum covariance analysis (MCA, Section 2.6) in the Ensemble Kalman Fitting 
(EKF400) paleo-reanalysis over 1602-2003. The ECs are filtered with a 10-yr lowpass filter to 
elucidate decadal variability. The shared fraction of covariance (SFC) is 49.2%, the correlation 
between the ECs is r=0.75. The area-weighted global mean is removed before MCA from Z500 and 
the 60ºS-60ºN mean from SST. Panel (c) also shows the correlations between the (non-filtered) ECs 
and an Atlantic Meridional Overturning Circulation (AMOC) reconstruction (Rahmstorf et al. 2015) 
and the EKF400 derived Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillation 
(AMO) indices (Section 2.2) in the legend. In (a) the regression of Z500 EC(1) onto the 200hPa 
streamfunction (Y200) calculated from EKF400 is shown with contours (unit: 106m2s-1). Panel (d) 
shows the regression of Z500 EC(1) onto SAT (shading) and 200hPa horizontal winds (blue arrows) 
for the GrIS in the EKF400, while the triangle markers correspond to the correlation between the 
GSI derived from EKF400 and 30 individual ice core records across the ice sheet with filled triangles 
indicating significant correlations (p<0.05) (also see Supplementary Table 1). Hatching indicates 
statistically significant regression values (p<0.05). In (b), the triangles correspond to the correlation 
between the 500hPa Greenland streamfunction index (GSI) derived from EKF400 and 33 individual 
coral records from PAGES2k with filled triangles indicating significant correlations (p<0.05).  
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3.2.6 Possible mechanisms behind the observation-model discrepancies 

Results based on the wind-nudging experiment highlight the contribution of large-

scale winds to rapid Greenland warming, the acceleration in GrIS mass loss and related 

sea-level rise since the early 1990s through a tropically-excited teleconnection that 

modulates the high-pressure driven adiabatic warming over the ice sheet. This constitutes 

a new framework for tropical decadal variability to influence global sea-levels through 

GrIS-related barystatic sea-level rise in addition to regulating ocean thermal expansion 

(Han et al. 2014; Hamlington et al. 2019). The out-of-phase relationship between tropical 

Pacific SST and Greenland SAT anomalies associated with the PARC teleconnection results 

in accelerated GrIS melt and thus an increase in sea-levels during PDO-negative, which 

counteracts the coherent decrease in ocean thermal expansion and the increase in ocean-to-

land water transport yielding a drop in sea-levels (Boening et al. 2012). This may explain 

why GrIS-driven barystatic sea-level rise shows acceleration since the 1990s, whereas the 

rate of thermal expansion-related sea-level rise is rather constant (Chen et al. 2017). 

Although the quantification of the tropical forcing in regulating the local wind-driven 

process remains unclear, evidence based on paleo-reanalyses and proxy records lends 

temporal credibility to the persistence of the abovementioned pathway. 

To further discussion on the forced/internal nature of observed GrIS surface and 

overlying circulation changes, I show the contrast between temperature changes over the 

GrIS in ERA5 and in the forced response in the CESM-LE (ensemble mean) by examining 

the summertime trend in temperature, geopotential height, and vertical motion (omega) 

zonally averaged over the ice sheet (Figure 3.2-11). In contrast to the vertical structure of 

temperature and geopotential height changes accompanied by significant downward motion 

in the lower troposphere in ERA5 (Figure 3.2-11a), the 40-member ensemble mean reflects 

anthropogenically-induced warming processes by simulating vertically uniform 
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temperature and geopotential height changes associated with upward vertical motion 

(Figure 3.2-11b). Imposing ERA5 winds in the CESM1, however, captures the observed 

vertical temperature and geopotential height structures as well as the downward motion 

(Figure 3.2-11c) albeit with differences in the boundary layer likely related to vertical 

resolution of the CESM1. These features are also seen on the corresponding correlation 

maps between the GSI and the zonally averaged temperature over the ice sheet (Figure 3.2-

11d-f). This analysis may offer a guide to future efforts targeting the nudging of winds in 

other climate models – possibly at higher resolution to better account for boundary layer 

processes, e.g., inversions, which are suggested to be a key contributor to GrIS surface 

changes (Shahi et al. 2020) –, and also points to a possible source of model deficiency that 

needs further attention and evaluation to better constrain the forced temperature response 

over the ice sheet. 
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FIG. 3.2-11. Possible physical mechanism behind the observed model deficiencies. Linear trend 
in zonal-mean temperature (shading: statistically significant values are hatched; p<0.05), zonal-
mean geopotential height (dash-dot contours; unit: m/decade) and vertical motion (omega; solid 
contours; unit: 105 Pa/s) over the GrIS (59ºN-85ºN;80ºW-20ºW) in (a) ERA5, (b) the mean of 40-
members (forced component) of the CESM-LE and (c) nudging experiment between 1980-2018 
JJA. Correlation (statistically significant values are hatched; p<0.05) between detrended zonal-mean 
temperature over the GrIS and 500hPa Greenland Streamfunction Index (GSI) in (d) ERA5, (e) the 
mean of the 40 individual correlation maps of the CESM-LE and (f) in the nudging experiment 
between 1980-2018 June-August (JJA).  
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3.3 Reassessing regional Arctic climate sensitivity and its possible biases 

This Section is based on Topál and Ding (in prep). 

In the previous two Sections we have seen how atmospheric processes, partially 

originating from low-frequency tropical SST decadal variability that is inherent to the 

climate dynamics, influence Arctic sea-ice and GrIS melting in summer. At the same time, 

significant model uncertainties were highlighted along with possible explanations behind 

the observed discrepancies between the observed and simulated melting processes. 

Continuing on the latter thread, I now describe progress made towards reassessing 

Regional Climate Sensitivity in the Arctic (RCSA) in numerous climate models by using 

large-scale atmospheric circulation as an emergent constraint (Notz 2013; Hall et al. 2019) 

on Arctic warming in three SMILEs (Deser et al. 2020), 31 CMIP5 and in 29 CMIP6 

models. In doing so, I generate a circulation index in the Arctic to measure atmospheric 

forcing and then statistically remove its impact from Arctic SAT, sea-ice and GrIS SMB in 

both observations and model simulations separately (Section 2.11). Considering that the 

SMILE means show only weak circulation changes in the Arctic since 1979 (as I have 

shown in Sections 3.1 and 3.2), a direct comparison of the residual parts more clearly 

reflects the response to the same anthropogenic forcing over the past decades in the real 

world and model environments than doing the same with the raw outputs. This also allows 

for a recalibration of models’ RCSA over the historical period, that is further used to 

constrain Arctic model projections assuming that RCSA is relatively stable in future global 

warming scenarios. In what follows, I will show that it is essential to account for the 

influence of atmospheric forcing on Arctic sea-ice and the GrIS when interpreting their 

transient sensitivities to anthropogenic emissions with major implications for the timing of 

the first seasonally sea-ice-free Arctic Ocean and widespread GrIS melting in the coming 

decades. 
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3.3.1 Divergent modelled and observed sensitivities 

To address the aim A4, I utilize the method described in Section 2.10 and 2.11. In 

doing so I first create indices of the global 300-hPa horizontal wind-based streamfunction 

(Y300) and SAT by spatially averaging over the Arctic (ASI) and over the GrIS (GSI), 

respectively (see Section 2.9). Recall, that the ASI/GSI measures the rotational component 

of atmospheric circulation variability and warming intensity over the Arctic/Greenland 

primarily through adiabatic processes. Next, I calculate R (as defined in Section 2.10) using 

a linear regression-based approach to quantify the sensitivity of Arctic (GrIS) SATs (RSAT) 

to upper-level large-scale circulation changes (as shown in the top x-axis in Figure 3.3-1). 

These calculations are intended to showcase differences between the observed and 

modelled SAT sensitivities to large-scale circulation: as opposed to the significant reduction 

in SAT trends in ERA5 over the Arctic (GrIS) after having regressed out the ASI (GSI), 

each and every member of the model ensembles indicate less of an influence from the 

ASI/GSI on SAT variability (Figure 3.3-1). The ensemble mean RSAT values in models are 

~34% (~50%) biased high compared to the reanalysis for the Arctic (GrIS) (Figure 3.3-1). 

Note that those 50 members of the CESM2-LE with observationally constrained biomass 

burning (BB) emissions (see more details on the CESM2-LE experimental design here) 

align better with the observed raw surface temperature trends (measured on the y-axis in 

Figure 3.3-1a-b) than of those without constraining BB emissions (DeRepentigny et al. 

2022; Fassulo et al. 2022). However as for the residual trends (measured on the x-axis in 

Figure 3.3-1a-b) it is no longer the case. This indicates that BB emissions cause enhanced 

surface warming without much interaction with atmospheric circulation. Moreover, those 

CMIP6 models simulating the largest (e.g., CanESM5, E3SM-1-1, CESM2-WACCM) and 

smallest (e.g., MIROC6, NorESM2, GFDL-ESM4) amounts of Arctic warming (Tokarska 

et al. 2020) are indistinguishable in terms of their simulated RSAT values (Figure 3.3-1c-d). 
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Hence their higher sensitivity to CO2 forcing is unlikely to be a consequence of better 

simulating atmospheric circulation changes. I also extended the calculations to the vertical 

cross-section of zonal mean temperatures over the Arctic and the GrIS, respectively, which 

yield similar results (Supplementary Figure 5). 

 
FIG. 3.3-1. Mismatch between observed and modelled sensitivity of Arctic and GrIS surface 
temperature changes to large-scale circulation. Scatterplot of the raw and residual (obtained as 
regressing out the GSI/ASI from Arctic/GrIS SAT over 1979-2020 period in summer, June-July-
August) SAT trends over the Arctic (panels a) and c)) and over the GrIS (panels b) and d)) in ERA5 
(a)-(b), in three SMILEs and (c)-(d) in 31 CMIP5 and 29 CMIP6 models (see legend). The small, 
transparent markers refer to the individual ensemble members, while the larger markers are the 
ensemble means. The CESM2-LE in panels (a)-(b) is separated into 50-members forced by CMIP6 
standards and 50-members with prescribed biomass burning emissions (BB). Note the upper x-axes 
in each of the panels, which refer to the R values (Section 2.10).  
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To further assess the robustness of the above findings I examine 40-year rolling-

window (linearly detrended) correlations between the ASI (GSI) and SAT over the Arctic 

(GrIS) using the ERA and NOAA 20th century reanalysis products in addition to the full 

length of the historical simulations in the SMILEs (1850-onwards) (Figure 3.3-2). Each 40-

yr long period can be considered as parallel realizations of the past four decades and thus 

helps to increase confidence in the results. Both reanalyses exhibit notable low frequency 

oscillations in the correlation between large-scale atmospheric circulation and SAT 

similarly over the Arctic and the GrIS, with a significant upward trend over the past century 

such that the circulation-surface connection over 1979-2020 is the strongest over the past 

150 years (Figure 3.3-2a-b). The reliability of the observational data steeply reduces with 

going back in time and uncertainties between the two reanalyses are as well acknowledged, 

however the similarities between the ERA and NOAA products after 1940s (onward the 

1936-1975 40-yr period) is reassuring. 

In contrast to reanalyses, the ensemble means of 40-yr rolling-window correlations 

(computed in each member separately, then averaged) across the three SMILES are rather 

constant or indicate slight weakening. In addition, computing the correlations across the 

ensemble members – instead of in each member separately – in each year offers new 

perspectives (Tél et al. 2020) in studying the forced response of the modelled connections 

between SAT and large-scale circulation. Hence, I calculate the ensemble-wise correlation 

coefficient (Herein et al. 2017; Haszpra et al. 2020a; Haszpra et al. 2020b) between the 

ASI/GSI and the respective surface temperature indices (Figure 3.3-2c-d). All three models 

indicate slight, but statistically significant weakening of the circulation-surface connection 

in response to anthropogenic emissions over the Arctic and the GrIS (Figure 3.3-2c-d) in 

contrary to observations. 
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This mismatch suggests that the observed increasing influence of large-scale 

circulation on Arctic climate over the past four decades (Figure 3.3-2a-b) is unlikely to be 

a forced response and raises concerns about the realistic representation of Arctic climate 

sensitivity to anthropogenic emissions in contemporary climate models. 

 
FIG. 3.3-2. Divergent changes in the influence of large-scale circulation on Arctic surface 
temperatures in reanalyses and in the models’ forced response. 40-yr rolling window 
correlations between SAT and the large-scale circulation index (GSI/ASI) over the (a) Arctic and 
(b) GrIS in reanalyses and SMILEs (see legend). The linear trend in removed from each variable 
before computing the correlations. As for the SMILEs, the correlations are computed in each 
individual members (thin lines) and then the average of the individual correlations are shown with 
the thick solid lines. Also shown: ensemble-wise correlations between SAT and large-scale 
circulation index (ASI/GSI) over the (c) Arctic and (d) GrIS in the three SMILEs and the linear trend 
fitted into the time series (dashed-line) and their p-values in the legend. The ensemble-wise 
correlation coefficient is used to estimate the forced response in the connection between atmospheric 
circulation and SAT to anthropogenic emissions. Note that the convergence time in the CESM-LE 
may affect the ensemble-wise correlations (Drótos et al. 2015).  
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3.3.2 Constraining projected Arctic climate change 

Here, I illustrate how the abovementioned mismatch between the modelled and 

observed Arctic SAT sensitivities to atmospheric forcing impacts future Arctic temperature 

projections. To do so, I constrain the modelled forced response projections so that the R 

values corresponding to the ensemble means and the observation, respectively, become 

identical over 1979-2020 while assuming that the ensemble spread remains the same (see 

details in Section 2.11). Since the models’ ensemble mean R values are greater than the 

observed (circulation is less prominent to cause warming in models than in observations), 

each ensemble shows slower warming in their future projections (2021 onwards) than their 

unconstrained time series. This also means, that the global mean temperature response to 

global warming, which is very well simulated by current climate models, may not offer a 

comprehensive-enough picture when studying RCSA.  

To showcase this point, I study the timing of three certain temperature thresholds 

(1ºC, 1.5ºC and 2ºC above pre-industrial levels, i.e., 1850-1900) to be crossed in the Arctic 

summer by plotting the corresponding cumulative density functions (Figure 3.3-3, Section 

2.12) in the CESM2-LE, MPI-GE and in 29 CMIP6 models (these models provide long-

enough data for 1850-2100). The results (Figure 3.3-3) indicate a consistent ~20-year delay 

(±5 years) in reaching each temperature threshold as a consequence of having constrained 

the modelled forced response. Hence, it is advisable to take caution when interpreting the 

RCSA based on the capability of climate models to reproduce the global mean surface 

temperature. 
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FIG. 3.3-3. Constraining projected Arctic warming. Cumulative probability density functions 
(CDF) corresponding to the date of (a) 1ºC, (b) 1.5ºC and (c) 2ºC warming above pre-industrial 
levels in the CESM2-LE and MPI-GE SMILEs and in CMIP6. The solid (dashed) lines indicate the 
raw (constrained) CDF (Section 2.13). The dates below the x-axes refer to the prospective delays 
introduced by matching the modelled sensitivities to large-scale circulation with observations over 
1979-2020. 

I further elaborate on these model limitations’ impacts on the simulated RCSA by 

translating the above results to September sea-ice extent (SIE) and JJA GrIS SMB in 

observations, the SMILE members and in the CMIP-class models (only the CESM2-LE for 

SMB). In doing so, I quantify the extent to which the SIE and SMB sensitivities to CO2 

forcing (the reduction in SIE/SMB per a tonne of observed CO2 emission over 1979-2020; 

Section 2.10) change after linearly regressing out the corresponding streamfunction indices 

(ASI/GSI) compared to the raw CO2 sensitivities by deriving RSIE and RSMB (Section 2.10). 

The discrepancies between the observed and modelled RSIE (RSMB) values (Figure 3.3-4a-

b) suggest that the models have unrealistically low sensitivity to atmospheric forcing 

accompanied by an overall high sensitivity to CO2 forcing in the Arctic, as indicated by the 
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ensemble mean RSIE (RSMB). I repeat the constraining method (performed on SAT) on future 

projections of sea-ice (and GrIS SMB in the CESM2-LE) by matching the ensemble mean 

RSIE (RSMB) to its observed counterpart over the 1979-2020 period (Section 2.12). The 

cumulative probability density functions corresponding to the time of emergence of the 

first seasonally sea-ice-free Arctic (below 1 million km2 SIE in September) in the raw and 

the constrained SIE time-series in the model ensembles show prospects of a 9–11-year 

delay of the ‘likely’ (in IPCC Climate Change (2013) terms) probability (P > 0.66) of a 

September ice-free Arctic, such that it is not likely to see an ice-free summer before 2050 

(Figure 3.3-4c, Section 2.12). As for the GrIS, adjusting the CESM2-LE’s SMB projections 

to match the observed sensitivity to atmospheric forcing yields a 15-year delay of the 

‘likely’ probability of widespread GrIS melting (when SMB<0 see Section 2.11; Figure 

3.3-4d). 

Hence, accounting for the RCSA bias in the models moderates the projected Arctic 

warming and sea-ice loss, which is starkly at odds with previous results so far (Bonan et al. 

2021; Laliberté et al. 2016; Wang et al. 2009; IPCC Climate Change 2013). The reason for 

this controversy may be that by using surface temperature to constrain the modelled RCSA 

previous studies had the impression that models underestimate the warming signal (e.g., 

Bonan et al. 2022) and conclude that the underestimation is due to their low sensitivity to 

anthropogenic emissions. In turn, I suggest that the models’ low sensitivity to atmospheric 

forcing can result in too strong Arctic warming- and a high sea- and land-ice sensitivity to 

anthropogenic forcing if the priority criteria to evaluate model performance is based on 

matching the simulations with observations. 
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FIG. 3.3-4. Constraining the date of the first sea-ice free September and widespread GrIS 
melting. (a)-(b) is the same as in Figure 3.3-2a-b, but for September SIE (a) and GrIS SMB (b) 
sensitivities to observed cumulative CO2 emissions. The small, transparent markers refer to the 
individual ensemble members, while the larger markers refer to the ensemble means. Note the upper 
x-axes in each of the panels, which refer to the R values (Section 2.10). Also shown: cumulative 
probability density functions of (c) the ice-free date in three SMILEs and in CMIP6 and (d) 
widespread GrIS melting in the CESM2-LE shown for the raw (solid lines) and the constrained 
model projections (dashed-lines) (Section 2.12). The thin dashed lines indicate the uncertainty due 
to the selection of the window-size used to estimate the constrained ice-free dates (Section 2.12). 
The dates below the x-axes refer to the prospective delays introduced by matching the modelled 
sensitivities to large-scale circulation with observations over 1979-2020.  
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3.3.3 Possible underlying causes of the sensitivity issues 

Previous studies have recognized the crucial role of observed atmospheric 

circulation changes in causing sea- and land-ice melting as well as upper-ocean warming 

in the Arctic using numerical model simulations with the CESM1 (Baxter et al. 2022; Ding 

et al. 2022; Li et al. 2022; Topál et al. 2022; Roach and Blanchard-Wrigglesworth 2022). 

These reinforce the simple statistical approach taken in this Section and support the 

physical interpretation behind the hereby suggested constraining method. In addition, the 

arguments raised here are irrespective of whether the underlying cause of the sensitivity 

issue lies in an insufficient simulation of atmospheric forcing response to CO2 (Roach and 

Blanchard-Wrigglesworth 2022) or that internal variability is what dominantly cause the 

observed circulation changes. Previous studies also assess the probability of an ice-free 

summer corresponding to a certain (annual mean) global warming level (Screen and 

Williamson 2017; Jahn 2018; Niederdrenk and Notz 2018; Sigmond et al. 2018), which 

approach seems to circumvent the sensitivity problem (the focus is elsewhere). 

Nevertheless, it does matter when and how we get to those certain global warming levels 

that can no longer host a frozen Arctic. I speculate that since the global mean temperature 

response to CO2 forcing seems insufficient to scale the Arctic climate response, my 

concerns translate into uncertainties of the probabilities of an ice-free Arctic at 1.5ºC or 

2ºC global warming above pre-industrial levels. 

The observed changes in Arctic circulation are likely in part driven by tropical 

Pacific decadal SST variability (Ding et al. 2014), which can generate strong upper-level 

divergence and convergence in the tropics (see Eq. 4 in Section 2.9) that further serves as 

the main source to create strong rotational winds in the high latitudes through Rossby-wave 

dispersion. However, the models’ forced responses do not favour a low frequency change 

in the rotational component of Arctic winds likely associated with that under global 
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warming scenarios models exhibit rather horizontally uniform SST response in the tropics, 

which obstructs the excitement of upper-level divergence and convergence changes. 

Hence, this mismatch between observations and models is likely to play a role in explaining 

the main underlying cause why models simulate much weaker low frequency changes of 

the rotational component of large-scale circulation in the Arctic. 

The new constraint on models’ RCSA presented here has important implications 

for the interpretation of current climate change projections for the Arctic and the future 

development of climate models. Studies have attempted to address possible biases in sea-

ice simulation, however, recalibration efforts that adjust modelled surface temperature 

trends to observations (Stroeve et al 2007; Screen and Simmonds 2010; Winton 2011;) are 

an interim fix to make predictions about the future of Arctic sea-ice, especially if the 

discrepancy between modelled and observed sea-ice loss is due to internal variability, 

which remains an open question (Moritz et al. 2002; Swart et al. 2015; Ding et al. 2019). 

The discrepancies between observed and simulated R values identified in this study suggest 

that the contribution of large-scale circulation forcing in recent Arctic warming, regardless 

of its origin being internal or forced, allows us to evaluate models’ sensitivity to 

anthropogenic forcing from new lens when there is a growing concern about the 

oversensitivity of models to anthropogenic forcing (Fyfe and Gillett 2014; Tokarska et al. 

2020; Zhu et al. 2020; Hausfater et al. 2022).  
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3.4 Central European summer hydroclimate projection uncertainties 

This Section is based on Topál et al. 2020b. 

Apart from changes in the Arctic, another region-specific focus of this dissertation 

arises from the fact that hydroclimate projections of CMIP-class global climate models 

diverge to a great extent in Central and East-Central Europe (Figure 3.4-1). In Section 1.4 

I introduced the key challenges that we need to face when assessing the robustness of future 

precipitation projections in our region. To resolve these uncertainties previous studies 

developed diverse model ranking methodologies, ranging from studies using correlation, 

root-mean-square error and variance ratio (Boer and Lambert 2001; Gleckler et al. 2008) 

to the application of prediction indices (Murphy et al. 2004) or to those taking a Bayesian 

approach (Min and Hense 2006). In addition, Olson et al. (2019) re-evaluated the 

interdependency of CMIP models (Sanderson et al. 2015) as another potential uncertainty. 

Regarding the target area of model evaluation Garfinkel et al. (2020) studied the sources 

of CMIP5 intermodel spread in precipitation changes globally, however, ample analyses is 

targeted at more regional areas, e.g., the North Atlantic (Perez et al. 2014), parts of Europe 

(Coppola et al. 2010; Pieczka et al. 2017), Africa (Brands et al. 2013; Dyer et al. 2019; 

Yapo et al. 2020), South America (Lovino et al. 2018) or Asia (Ahmed et al. 2019). 

In this Section I describe an approach I took to evaluate East-Central European 

hydroclimate model projection uncertainties using multiple CMIP5 and SMILE 

simulations. 
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FIG. 3.4-1. Location of the study area on an orography map. The purple and blue dashed lines 
represent the HISTALP Northeast (NE) and Southeast (SE) regions. The primary target area is 
selected as the rectangle overlapping the NE and SE regions, i.e. 43°N-50°N;13°E-19.5°E. The black 
rectangle represents the Central Europe (CEU) domain (extended target area) used to evaluate 
CMIP5 models against the NOAA 20th century reanalysis. This Figure is adopted from Topál et al. 
(2020b). 

3.4.1 Assessing historical performance of CMIP5 models 

To begin with, I assess the historical performance of 32 CMIP5 models (Table 1), 

based on the HISTALP observations (Section 2.15; 1861-2005) and use the ranking 

method introduced in Section 2.16. In doing so, at first RMSE, rank and NSE were 

calculated for the NE and SE subregions for both summer (JJA) and winter (DJF) seasons 

separately, then averaged over the primary target area. Then I average the seasonal statistics 

and obtain the mean RMSE, rank and NSE (Figure 3.4-2a) per variable. As the next steps, 

I re-scale them to range from 0 to 1 based on Eq. 8 and via averaging the re-scaled mean 

RMSE, rank and NSE values I obtain the grand-RMSE, -rank and -NSE (Figure 3.4-2b). 

The 32 CMIP5 models show diverging performance in capturing past seasonal TS and PR 

variability (Figure 3.4-2). Some models (e.g., FGOALS-s2; MRI-CGCM3) stand out from 

others, suggesting that abandoning the ‘one model one vote’ approach (Knutti 2010) is a 
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right decision for the target area. Those models that performed above the 90th percentile of 

the CMIP5 ensemble based on any of the three metrics – a total of six models (FGOALS-

s2; IPSL-CM5B-LR; MPI-ESM-LR; MRI-CGCM3; MRI-ESM1; GISS-E2-R-CC) – are 

selected that skillfully reproduce multidecadal TS and PR variability over the past ~150 

years in East-Central Europe (Figure 3.4-2b). 

 
FIG. 3.4-2. Constraining past hydroclimate projections of CMIP5 models. (a) Surface 
temperature (TS) and precipitation (PR) mean ((JJA+DJF)/2) ranks (upper panel), mean NSE 
(middle panel) and mean RMSE (lower panel) for East-Central Europe for the historical era (1861-
2005) across 32 CMIP5 climate models (indicated below the x-axis). (b) box-and-whiskers plot of 
the scaled [0;1] grand-rank, grand-NSE and grand-RMSE (indicated below the x-axis) showing the 
10th and 90th percentiles of 32 CMIP5 model’s performances. Red circles show models above 90th 
and below 10th percentiles, respectively. Those six models above the 90th percentile in the grand-
rank or -NSE or -RMSE are highlighted with green on (a). This Figure is adopted from Topál et al. 
(2020b). 
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3.4.2 Validation of the ranking based on the NOAA 20th century reanalysis 

To account for possible obscuring effects of the moderate size of the primary target 

area on the selection of the best performing models, I repeat the ranking using only RMSE 

for the extended domain (Figure 3.4-1) based on the NOAA 20th century version 3 gridded 

reanalysis (Section 2.15; Slivinski et al. 2019). The calculation method is equivalent to the 

one applied to the HISTALP records except the 32 CMIP5 models are evaluated against 

the gridded reanalysis product. The spatial distribution of the reanalysis-based TS/PR mean 

RMSE relative to the CMIP5 multi-model ensemble mean for the six previously selected 

models are shown in Figure 3.4-3. In addition, the TS/PR mean RMSE and the grand-RMSE 

for each model averaged over the extended target area is shown as a box-and-whiskers plot 

(Figure 3.4-3m). Based on the grand-RMSE for the extended target area only three out of 

the previously selected six models exhibit similar good overall performance; thus, I further 

reduce the range of selected models to the MRI-CGCM3, MRI-ESM1 and FGOALS-s2 

and refer to them as the constrained ensemble. 
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FIG. 3.4-3. Evaluation of model performance based on the NOAA 20th century reanalysis. 
Spatial map of (a)-(f) surface temperature (TS) and (g)-(l) precipitation (PR) RMSE based on the 
NOAA 20th century reanalysis (1861-2005) relative to the CMIP5 ensemble mean shown for the top 
6 ranked models and (m) box-and-whiskers plot of the TS (violet) and PR (light blue) RMSE 
averaged for the Central European (CEU) domain (43°-57°N;4°E-20°E) and the average of the TS 
and PR RMSE values (grand-RMSE with grey) for 32 CMIP5 models each of which is marked as in 
the legend. The whiskers extend to the minimums and maximums. The median of each group is 
indicated with orange horizontal lines. The means are marked with ×. This Figure is adopted from 
Topál et al. (2020b). 
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3.4.3 Rank histograms to assess SMILE performance 

Furthermore, since internal variability cannot be correctly assessed in a multi-

model ensemble because of the initial condition problem and differences in model 

structures (Branstator and Teng 2010; Knutti 2010; Bódai and Tél 2012), it must be 

considered, that it may leave its fingerprint on the applied ranking. Hence, I study rank 

histograms of historical precipitation projections of the MPI-GE and EC_EARTH-LE in 

the primary target area (Figure 3.4.4). Both SMILEs underestimate the observed summer 

and winter precipitation variability (histograms are u-shaped), which is reinforced by the 

chi-squared tests indicating significant differences from uniformity (on the 99% confidence 

level). Additionally, the CMIP5 multi-model ensemble shows similar rank histograms to 

the SMILEs’ Figure 3.4.4e-f), except that the winter rank histogram does not differ 

significantly from a flat one. These indicate that (i) conclusions based on simulated internal 

variability by these two state-of-the-art SMILEs should be treated with caution and that (ii) 

observational constraints may indeed be helpful in revealing models with structural 

advances relative to other models. 
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FIG. 3.4-4. Rank histograms. Evaluation of rank histograms (Section 2.17) based on the year-to-
year seasonal mean HISTALP observed precipitation in the primary target area (43°N-50°N;13°E-
19.5°E) for two large ensembles (a)-(b) MPI-GE and (c)-(d) EC_EARTH-LE, in addition to the 
CMIP5 multi-model ensemble (e)-(f). (a)-(e) are found to significantly differ from a flat rank 
histogram based on a chi-squared test (p<0.01). This Figure is adopted from Topál et al. (2020b). 

3.4.4 A possible source for a reduced projection spread: land-atmosphere couplings 

I am particularly concerned with how future projections of the constrained model 

ensemble look like in East-Central Europe. Not only did the ranking result in a reduced 

spread in historical simulations, but the members of the constrained ensemble also show 

reduced spread in their future projections relative to the CMIP5 ensemble mean for both 

summer (Figure 3.4.5a) and winter (Figure 3.4.5b). Moreover, the difference between the 

CMIP5 ensemble mean (28 models’ mean: -3.9%/decade) and the constrained ensemble 

mean (3 models’ mean: -0.1%/decade) future precipitation trend is significant based on a 

two-sample t-test (99% confidence level). The three top-ranked models indicate less dry 
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summer and wetter winter conditions in the upcoming decades not only in the primary 

target area, but on the extended domain as well in parallel with considerable surface 

temperature rise (Figure 3.4.6). Members of the constrained CMIP5 ensemble indicate -0.7 

to +1 %/decade summer and +1 to +5 %/decade winter precipitation change for East-

Central Europe relative to 1971-2000. Examining the constrained ensemble members’ 

future seasonal surface temperature projections, I find no noticeable differences relative to 

the CMIP5 ensemble mean, therefore I rule out the possibility that the discrepancy in future 

precipitation projections may be due to a negative surface temperature bias in those models. 

 
FIG. 3.4-5. Future precipitation projections of the constrained CMIP-ensemble. Time series of 
standardized (relative to 1971-2000 mean) seasonal mean precipitation (PR) for 2021-2085 (31-yr 
moving averaged) for the members of the constrained CMIP5 ensemble (colored solid lines) and the 
mean of 31 CMIP5 models (thick solid grey line) in addition to the 31 individual models in CMIP5 
(thin solid grey lines) for the primary target area (43°N-50°N;13°E-19.5°E) (a) for JJA and (b) for 
DJF. This Figure is adopted from Topál et al. (2020b). 
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These results are partly at odds with previous expectations that project extensive 

summer drying in the Central European region (Feng and Fu 2013; Polade et al. 2015; 

Pfleiderer et al. 2019). One mechanism for the advanced summer aridification in the region 

has been associated with the moist lapse-rate feedback due to global warming (Brogli et al. 

2019). A warmer atmosphere, deduced from Clausius-Clapeyron relation, can held more 

moisture, which, during moist adiabatic vertical motions, allows enhanced latent heat 

release and thus upper-tropospheric warming. These altogether result in an increased dry 

atmospheric static stability as the thermal stratification remains close to the moist adiabat 

during summer (Schneider 2007; Brogli et al. 2019). Another mechanism regarding 

changes in atmospheric circulation regimes, such as the poleward shifted subsidence zone 

with the projected expansion of the Hadley-cell, has also been suggested to influence future 

hydroclimate in the region due to enhanced radiative forcing (Perez et al. 2014; Mann et 

al. 2018). Nevertheless, the inconclusive literature (e.g., Kröner et al. 2017) hinders us from 

a complete understanding of possible future precipitation changes in transitional climatic 

zones, such as Central Europe. 

Recent studies highlight a competing role for land-atmosphere interactions and the 

extent of its realistic representation in climate models in determining future hydroclimate 

uncertainty in the Mediterranean and Central Europe, where soil moisture largely affects 

temperature and precipitation via the partitioning of net radiation into sensible and latent 

heat fluxes (Boberg and Christensen 2012; Lorenz et al. 2016; Vogel et al. 2018; Al-Yaari 

et al. 2019; Selten et al. 2020). It has also been proposed that it is not enough for a model 

to faithfully represent observed soil-atmosphere feedbacks because convection, land-

surface and cloud parametrization schemes not only influence how soil moisture-

precipitation feedbacks are handled in a model, but they also affect soil moisture-

temperature feedbacks in turn (Christensen and Boberg 2012). This further complicates and 
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highlights the importance of land-atmosphere interactions in determining future 

hydroclimate uncertainty in our target region. 

Members of the constrained CMIP5 ensemble belong to the group of CMIP5 

models that was identified by Vogel et al. (2018) with (i) more fidelity in representing land-

atmosphere couplings and (ii) less pronounced summer hot and dry extremes for central 

Europe. A physical mechanism strongly connected to land-atmosphere feedbacks that 

might balance the decrease in precipitation during future transition into drought-prone 

regions in Central Europe was also suggested (Taylor et al. 2012a). In an early study Dai 

(2006) showed that a previous version of MRI-CGCM3 (the MRI-CGCM version 2.3.2a) 

better captured observed global rainfall patterns than other models indicating that some 

basic features rooted in the model physics (most likely the convective and stratiform 

precipitation parametrization schemes) can indeed be sources of intermodel spread. 

These lines of evidence reinforce the idea of ranking to constrain future 

hydroclimate projections of different CMIP5 models based on evaluating their historical 

performance and suggest an important physical mechanism that can explain why the above-

selected models perform better regionally. Furthermore, presented results provide valuable 

implications for future RCM simulations and advocate future research to revisit the 

problem of the fidelity of land-atmosphere feedbacks in RCM simulations, where the 

enhanced resolution allows for a more detailed picture of regional feedback mechanisms. 
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FIG. 3.4-6. Long-term (2021-2085) surface temperature and precipitation changes in the 
constrained CMIP5 ensemble. Spatial map of the linear trend (relative to 1971-2000 mean) of (a)-
(c) & (g)-(i) surface temperature (TS: K/decade) and (d)-(f) & (j)-(l) precipitation (PR: %/decade) 
for 2021-2085 (31-yr moving averaged) under RCP8.5 scenario in the members of the constrained 
CMIP5 ensemble for JJA and DJF. This Figure is adopted from Topál et al. (2020b). 
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3.4.5 Placing future precipitation projections of the constrained ensemble in the 
context of SMILE projections 

Based on the ranking I identified a constrained CMIP5 multi-model ensemble that 

shows reduced spread in their historical and future precipitation projections indicating less 

dry summer and wetter winter conditions in the upcoming decades. I have also discussed 

that land-atmosphere feedbacks may be of key importance in explaining why some models 

perform better than others. The advantage of including SMILE simulations here is to 

provide an estimate (i) for the forced response (ensemble mean) in precipitation to 

greenhouse gas emissions as well as (ii) for all possible states allowed by internal variability 

in a certain model (ensemble spread), which allows for placing the observationally 

constrained CMIP5 ensemble (three top-ranked models) in the context of internal 

variability. What is more, with the inclusion of six SMILEs, I can compare the internal 

variability of projected precipitation of various models, thus, get a more robust estimate of 

future states of hydroclimate allowed by internal variability in the region. Caveats added 

by the coarse spatial and topography resolution of SMILEs are also noted, however, 

currently it is our best estimate for projected hydroclimate uncertainty due to internal 

variability because of lacking SMILEs with regional climate models. 

The spatial map of the ensemble mean future precipitation projections’ linear trends 

for Europe as well as the spread across all members of the ensembles as a box-and-whiskers 

plot are shown in our primary target area for summer (Figure 3.4.7). In summer all SMILE 

mean simulations show drier future conditions in East-Central Europe indicating -2% to -

7%/decade precipitation decrease during the upcoming decades relative to 1971-2000 

(Figure 3.4.7), while the constrained CMIP5 ensemble mean trend indicates less 

pronounced summer drying (-0.1%/decade). However, the magnitudes of the ensemble 

mean projections as well as the ensemble spread of different SMILE simulations varies 

considerably across the six SMILEs, that implies a role for model uncertainty in regulating 
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future hydroclimate changes on top of internal variability. Furthermore, the constrained 

ensemble’s mean future (2021-2085) precipitation trend (-0.1%/decade) emerges from the 

interquartile range of simulated internal variability by six SMILEs ((-8%, -1%)/decade). 

The difference between the group of future precipitation trends spanned by all the members 

of the six SMILEs (a total of 256 members) and the constrained ensemble (3 members) is 

significant based on a two-sample t-test on the 99% confidence level (the means of the two 

groups’ trends: -4.8%/decade for the six SMILEs and -0.1%/decade for the constrained 

ensemble). 
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FIG. 3.4-7. Future regional precipitation changes in SMILEs. Above: (a)-(f) spatial map of the 
ensemble mean (forced component) linear trend (relative to 1971-2000) of summer (June-July-
August: JJA) precipitation for 2021-2085 (31-yr moving averaged) for the six SMILEs. Below: (g) 
box-and-whiskers plot (with the whiskers extending to 1.5×interquartile range) of JJA precipitation 
linear trends (relative to 1971-2000) for 2021-2085 (31-yr moving averaged) for the CMIP5 multi-
model and the six SMILEs (indicated below the x-axis) for the primary target area (indicated by the 
red rectangles on (a)-(f): 43°N-50°N;13°E-19.5°E). The median of each ensemble is indicated with 
numbers above the boxes in addition to the orange lines. The means are marked with ×, while the 
outliers (extending 1.5×interquartile range) are marked with +. Trend values of the members of the 
constrained CMIP5 ensemble are indicated with markers on the first box-and-whiskers. This Figure 
is adopted from Topál et al. (2020b). 
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Since observations were used to constrain the CMIP5 ensemble, which resulted in 

the selection of models with more realistic representations of land-atmosphere feedbacks, 

I suggest that the difference between the constrained ensemble’s and the six SMILEs’ future 

summer precipitation trends may be attributable to land-atmosphere coupling 

discrepancies between the models. Importantly, except for the CESM1, the base models of 

the large ensemble simulations were either involved in the ranking, or I evaluated their 

historical simulations. Thus, it is unlikely that the SMILE simulations would regionally 

outperform the members of the constrained CMIP5 ensemble in capturing observed 

precipitation variability. Although, this needs further efforts to clarify, these lines of 

evidence suggest less extreme summer drying in East-Central Europe and that land-

atmosphere coupling may play a key role in regulating future summer hydroclimate 

uncertainty in line with several recent studies (Boberg and Christensen 2012; Vogel et al. 

2018; Selten et al. 2020). 

These results suggest an important role for land-atmosphere coupling differences 

among climate models in regulating future summer hydroclimate uncertainty on top of the 

irreducible internal variability and calls for caution when interpreting future summer 

precipitation projections of the state-of-the-art SMILE simulations. I urge coordinated 

efforts to further quantify the relative contribution of internal variability and model 

structural differences in regulating future seasonal hydroclimate uncertainty in Central 

Europe by e.g., running SMILEs with regional climate models or downscaling existing 

SMILEs for our region. 
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4 SUMMARY and THESES 

In this dissertation I have addressed four main topics, involving five aims (A1 to 

A5). As for A1 I have shown that T1: an atmospheric process, partially originating from 

internal variability, is a significant contributor to sea-ice changes not only in the past 

decades, but also under future emissions scenarios. Nonetheless, important model 

limitations were also highlighted, which yet obstructs the attribution of Arctic sea-ice 

changes to internal versus forced origins. 

Making use of the wind-nudging framework (A2 and A3), however, I have shown 

example how to circumvent the model biases and quantified the wind-driven response of 

GrIS melting with implications to global sea-level rise. T2: A substantial portion, –71.7 

Gt yr-1 decade-1 (out of the –132.8 Gt yr-1 decade-1) total ice mass change equaling ~0.2 

mm yr-1 decade-1 sea-level rise acceleration relates to wind-induced adiabatic 

warming between 1990 and 2012, which holds potential for atmospheric circulation 

to affect the rate of sea-level rise to a similar extent in the coming decades. 

T3: Paleoclimatic evidence reinforces that the significant enhancement of 

GrIS melting between 1990 and 2012 and associated acceleration in the rate of sea-

level rise have been a manifestation of low-frequency variability in the climate system, 

arising from decadal tropical SST variability. 

Lessons learnt from the nudging experiments lead to the next steps to actually 

interpret the model issues in terms of the transient climate sensitivity (A4). The 

misrepresented sensitivity of Arctic sea-ice and the GrIS to large-scale winds in climate 

models prioritizes a need to refocus model evaluation efforts from expecting the models to 

match observed surface warming rates in their forced responses and instead assess model 

skill in simulating the observed sensitivity to overlying circulation changes. 
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T4: The global mean temperature response to CO2 forcing seems insufficient 

to scale the Arctic climate response. The models’ low sensitivity to atmospheric 

forcing (compared with observations) can result in too strong Arctic warming- and a 

high sea- and land-ice sensitivity to anthropogenic forcing if the priority criteria to 

evaluate model performance is based on matching the simulations with observations. 

We have also seen that the main difference between the modelled and observed 

RCSA is that T5: the models’ forced responses do not favour a low frequency change 

in the rotational component of Arctic winds since under global warming scenarios 

they exhibit rather horizontally uniform SST response in the tropics. Hence the main 

source to create strong rotational winds in the high latitudes through Rossby-wave 

dispersion is obstructed. 

Accounting for this discrepancy I find that T6: the likely probability of a seasonally 

ice-free Arctic and widespread GrIS melting is delayed by 9–15 years, and it is not 

likely to see an ice-free summer before 2050. 

Hence, improved simulation of the Arctic’s observed sensitivity to large-scale 

atmospheric circulation-driven changes in climate models may provide a means of 

significantly improving predictions of the GrIS’s future contribution to global 

environmental crises, including freshwater discharge into the Atlantic Ocean that may 

influence the recently observed AMOC slow-down (Rahmstorf et al. 2015; Caesar et al. 

2021), global sea level rise (Briner et al. 2020; Slater et al. 2020; Frederikse et al. 2020) 

and toxic mercury transport to the global oceans (Hawkings et al. 2020). The local 

atmospheric circulation bias may also be linked to model limitations in simulating tropical-

Arctic teleconnections and their sensitivity to low frequency tropical SST variability and/or 

high-latitude sea-ice-ocean-atmosphere interactions (Topál et al. 2020a; Luo et al. 2021), 

which, according to previous studies (Ding and Wang 2005; Ding et al. 2011), could arise 
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from biases in simulating low-frequency SST and rainfall variability over the tropical 

eastern Pacific and the climatological mean flow over the North Pacific. 

If the Arctic climate system in current climate models is indeed insufficiently and 

exaggeratedly sensitive to CO2, then future research will need to identify the processes and 

physics in models that contribute to the biased sensitivity. The above results in Section 3.3. 

suggest a delay in the time of emergence of an ice-free Arctic, which may be a silver linen. 

Nevertheless, regarding preserving the Arctic’s local cryosphere, a better understanding is 

called for the ‘too hot’ issue (Hausfater et al. 2022) through quantifying the role of observed 

large-scale circulation in explaining warming particular regions of the planet over the past 

decades. This new perspective may move us closer to understand why some CMIP6 models 

have become more sensitive to greenhouse effects (Zelinka et al. 2020). In summary, the 

evaluation of models’ ability to represent the ASI/GSI may need to precede the assessment 

or recalibration of models’ Arctic sea- or land-ice projections based on their simulation of 

the global mean temperature response to CO2 forcing. 

Regarding A5, unfortunately, those models identified in Section 3.4 are currently 

not being used to force regional climate model (RCM) simulations in East Central Europe, 

which may lead to spurious projections of future drying in our region and false attribution 

of internal variability driven changes to a forced hydroclimate response. T7: My results 

suggest that the difference between the constrained ensemble’s and the six SMILEs’ 

future summer precipitation trends may be attributable to land-atmosphere coupling 

discrepancies between the models. Physical differences between models thus plays an 

important role in regulating future summer hydroclimate uncertainty and calls for 

caution when interpreting future summer precipitation projections of the state-of-

the-art SMILE simulations. 
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Hence, I advocate for the need to systematically consider internal variability as a 

separate form of model projection uncertainty on top of model structural uncertainties that 

arise from the differences in the models’ physical settings. This separation is only possible 

with downscaling SMILEs made with global climate models (see e.g., Wood and Ludwig 

2020), however this approach so far has been overlooked by national climate policymakers. 

This approach should be a high-priority next step in coordinated national policymaking 

with implications to agricultural adaptation planning.  
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6 SUPPLEMENTARY MATERIAL 

Supplementary Table 1. 30 ice core records across the GrIS used in the study and the correlation 
coefficients between the individual ice cores and the MCA(1) related expansion coefficient time-
series of Z500 (r<Z500>) and the 200hPa Greenland streamfunction index (r<Y200>) in the 
EKF400 simulation. The source codes of the oceanic coral records are also shown in the rightmost 
column referring to the codes of the original datasets in PAGES2k Consortium (2017). The bold 
coefficients mark significant correlations (p<0.05). 

Ice Core Site Lat Lon r(Z500) r(Y200) Coral proxy site  

Prince-of-Wales 78.4 -80.4 -0.13 -0.24 Ocn_095 
B26 77.25 -49.22 -0.05 -0.09 Ocn_111 
B19 78 -36.4 -0.03 -0.01 Ocn_087 
B27 76.66 -46.48 0.06 0.02 Ocn_140 
B21 80 -41.14 -0.06 0.02 Ocn_073 
B22 79.34 -45.91 -0.01 0.03 Ocn_099 
Agassiz A79 80.7 -73.1 0.03 0.05 Ocn_078 
Camp Century 77.17 -61.13 -0.08 0.1 Ocn_156 
B16 73.94 -37.63 -0.07 0.1 Ocn_109 
B20 78.83 -36.5 -0.08 0.1 Ocn_110 
GRIP 72.58 -37.64 0.15 0.1 Ocn_060 
Site G 71.76 -35.85 0.05 0.1 Ocn_122 
Devon Ice Cap 75.33 -82.5 -0.08 0.12 Ocn_097 
B18 76.62 -36.4 -0.02 0.16 Ocn_090 
B30 75 -42 0.04 0.16 Ocn_081 
Site E 71.15 -35.84 0.12 0.18 Ocn_080 
B23 78 -44 0.19 0.19 Ocn_120 
Agassiz A87 80.7 -73.1 -0.04 0.19 Ocn_062 
B17 75.25 -37.62 0.11 0.2 Ocn_098 
B28 76.66 -46.48 0.13 0.2 Ocn_075 
Renland 71.27 -26.73 0.11 0.21 Ocn_125 
NEEM 77.45 -51.06 0.17 0.22 Ocn_130 
B29 76 -43.49 0.09 0.22 Ocn_103 
Site A 70.63 -35.82 0.14 0.23 Ocn_179 
GISP2 72.6 -38.5 0.16 0.25 Ocn_068 
Site D 70.64 -39.62 0.2 0.25 Ocn_084 
Crete 71.12 -37.32 0.14 0.28 Ocn_079 
DYE2 66.38 -46.18 0.16 0.29 Ocn_083 
NGRIP 75.1 -42.32 0.26 0.3 Ocn_077 
Milcent 70.3 -44.58 0.28 0.38 Ocn_074      

Ocn_088      
Ocn_119      
Ocn_086 
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Supplementary Figure 1. Maps of the linear trends in the surface energy balance (SEB = 
SWnet+LWnet) in (a) the EBAF satellite product, (b) the nudging experiment (Exp) and (c) the 
CESM large ensemble mean (LENS) in summer (June-July-August, JJA) during 2001-2020. (d)-(f) 
is the same as (a)-(c) but for annual means. Panel (g) shows the GrIS spatially averaged linear trends 
in the SEB from the LENS (grey dots) and the nudging experiment (Exp, orange marker) along with 
the EBAF satellite product (green marker) in JJA (first column) and annual means (second column) 
for 2001-2020. Stippling indicates statistically significant trends on 95% confidence level. 
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Supplementary Figure 2. Panels (a) and (c) show the correlation between EBAF surface energy 
balance (SEB) and the nudging experiment derived 500hPa Greenland streamfunction index (GSI) 
for JJA and annual means, respectively, and (b) shows the correlation between EBAF SEB and GSI 
in ERA5 (blue triangle) or the nudging experiment (orange triangle) along with the correlation 
between SEB and GSI in each member of the CESM-LE (grey dots) and the mean of each member’s 
correlation (black dot) for JJA (left box plot) and annual means (right box plot) (see legend in panel 
(b)). Hatching in (a),(c) indicate areas with statistically-significant correlations (p<0.05). 

 

 
Supplementary Figure 3. Comparison between the (a) nudging experiment-driven CISM Glimmer 
simulation and the (b) MAR SMB (forced by ERA5) spatial climatologies for 1980-2018 annual 
means along with the SMB linear trend maps in the (c) Glimmer simulation and in (d) MAR. 
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Supplementary Figure 4. (a) GrIS spatially-averaged time-series of anomalies in MAR surface air 
temperature (SAT, pink) and surface mass balance (SMB, blue), the ensemble mean SAT from CESM 
large ensemble (CESM-LE, black) and the SAT from the wind-nudging experiment (Exp) in CESM1 
(orange) for the annual means. The grey shading in (a) represents all members’ SAT anomalies from 
the CESM-LE. In (b) ERA5 500hPa Greenland streamfunction index (GSI) (green) is compared with 
the GSI calculated using the CESM-LE mean (black), the spread in CESM-LE (grey shading) and 
the wind-nudging experiment (Exp, orange) for annual means. Also shown: (c) the grid-point-wise 
correlation between the MAR and the CISM Glimmer experiment derived annual mean SMB along 
with the regression maps of (d) MAR SMB and (e) MAR SAT onto the 500hPa GSI derived from the 
nudging experiment. Hatching in (c)-(e) indicate areas with statistically-significant correlations or 
regressions (p<0.05). 
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Supplementary Figure 5. Linear trend vertical cross-section of zonal mean temperature over (a)-
(c) the GrIS (280-340ºE; 60-85ºN) and (d)-(f) over the Arctic (60-90ºN) in summer (June-July-
August, JJA) between 1979-2020 in (a),(d) ERA5, (b),(e) CESM1-LE mean simulation and (c),(f) 
in our nudging experiment (see Section 2.10). In (a)-(b) and (d)-(e) the ratio of the raw and the 
residual trend values are also shown in percentages, where the residual trends refer to the 
temperature trends after having removed the corresponding streamfunction indices (ASI/GSI) at each 
vertical level and latitude point. Statistically significant linear trend values (two-sample t-test at 95% 
confidence level) are hatched. 


