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„…Fülelt a csend – egyet ütött. 

Fölkereshetnéd ifjúságod; 

nyirkos cementfalak között 

képzelhetsz egy kis szabadságot – 

gondoltam. S hát amint fölállok, 

a csillagok, a Göncölök 

úgy fénylenek fönt, mint a rácsok 

a hallgatag cella fölött…” 

 

József Attila 

Eszmélet (1934) 
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1. INTRODUCTION AND OBJECTIVES 

Natural ionizing radiation originates from various sources. These can affect the human 

body via different pathways, causing both external and internal exposure. For example at high 

altitude cosmic radiation, and its induced radionuclides cause elevated effective doses but at 

sea level the largest contribution is from terrestrial radionuclides such as radon and thoron. 

Radon (222Rn, Rn) and thoron (220Rn, Tn) isotopes, from the 238U and 232Th decay chains 

respectively, are responsible for approximately the half of the total annual effective dose from 

natural sources to an average human (e.g. Eisenbud and Gesell 1997, UNSCEAR 2000). 

Elevated concentrations of radon and thoron are generally considered to increase the risk of 

lung cancer based on epidemiological data (Darby et al. 2005) and, given the acceptance of 

the linear non-threshold (LNT) model (ICRP 2005), even low doses have significant 

cumulative effect when considering the human population. In the past, exposure to thoron was 

often ignored due to its very short half-life which was believed to prevent its indoor 

accumulation. It is already known that thoron and its progenies can significantly contribute to 

the radiation dose in certain environments (UNSCEAR 2006). Thus, it is important to identify 

these environments. Before the start of this research project, not many indoor thoron data 

were available in Hungary, i.e. only those published by Hámori (2006) and Kávási et al. 

(2007). Therefore, the subject of this study was instead found based on international 

experiences. 

Several studies (Németh et al. 2005, Sciocchetti et al. 1992, Shang et al. 2005, Yamada et 

al. 2005, Yonehara et al. 2005) show elevated radon and thoron activity concentrations in 

dwellings built of soil and mud. These dwellings are very similar to Hungarian adobe 

dwellings. In Europe, Germany has also targeted the very similar half-timbered houses (wood 

structure filled in with clayey material) for a current research project (HZM, 

http://www.helmholtz-muenchen.de). The porous and permeable structure of these similar 

building materials, the lack of any burning procedure in their preparation (Sas et al. 2012, Sas 

2012) and probably the fact that they consist of mostly small sized grains is proven to lead to 

increased radon and thoron exhalation and indoor accumulation. In the case of radon in 

Hungarian adobe dwellings, this was already pointed out by Minda et al. (2009). For this 

reason, Hungarian adobe dwellings are chosen to be good candidates to find the possible 

environments with significant thoron presence. 

Adobe, made from clay, sand (soil), water, and various organic materials, is a typical 

building material of cultural heritage which used to be frequently used in rural areas of 
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Hungary. The adobe dwellings still provide a cheap housing option for a high-number of 

people. Adobe dwellings are generally considered to have a low energy cost, a small 

environmental impact and a healthy, well ventilated, natural indoor environment. For this 

reason the tradition of building adobe houses is being revived. Therefore, the consideration of 

all possible health hazards, such as external radiation doses and both indoor radon and thoron 

activity concentrations becomes more important. 

For another aspect, Tokonami (2010) pointed out the importance of indoor thoron 

measurements along radon for the correct inhalation dose estimation. Kávási et al. (2007) also 

stated that the possible interfering effect of thoron, in the already available radon indoor 

results, has to be also considered in Hungary. However, not only indoor activity concentration 

and inhalation dose estimation methodologies should be improved as was experienced during 

this study. 

The main objective of this research was to evaluate the assumed elevated terrestrial 

radiation risk in Hungarian adobe dwellings via studying adobe building material samples and 

also via indoor measurements. The focus is on external radiation, radon, and as a new point, 

thoron indoor accumulation. The regional and local geological differences might significantly 

affect the terrestrial radioactivity levels in locally made adobe building materials and 

dwellings. Therefore, the spatial distribution of these terrestrial radioactivity levels and also 

possible affecting parameters, like grain size distributions and connected specific surface 

areas, needs to be studied as well as the seasonal variation of indoor radon and thoron activity 

concentrations. The effect of moisture content studied by numerous authors (e.g. Hosoda et al. 

2007, Ingersall 1983, Megumi and Mamuro 1974, Stranden et al. 1984, Strong and Levins 

1982) found to be interesting to consider indirectly in seasonal results. The results are aimed 

to help later studies to find high risk localities and periods. During this study, also some 

problems occurred in the reliability of the available radon and thoron emanation 

determination methods of building material samples. To provide solution for these became a 

specific aim of this study.  
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2. TERRESTRIAL RADIOACTIVITY 

2.1. Effective doses from and sources of natural ionizing radiation 

The worldwide average annual exposure to natural radiation sources remains 2.4 mSv y-1 

(UNSCEAR 2000). Its sources and their contribution to the average annual effective dose of 

humans are presented on Fig.1. Basically, three types of natural ionizing radiation sources 

dominate. Among these, cosmic radiation contributes 15 % (cosmic including neutrons, 

Fig.1.), cosmic radiation induced radionuclides contribute 0.6 % (cosmogenic nuclides, 

Fig.1.) and terrestrial radionuclides altogether (40K, 87Rb, radon and 214Pb, other from 238U 

series, thoron and 208Pb and other from 232Th series on Fig.1.) contribute 84.4 % to the 

average human effective dose (Eisenbud and Gesell 1997). 

 

 

Fig.1.: Average contribution of natural sources to the human effective dose (data used from 

Eisenbud and Gesell 1997). Radon -214Pb and Thoron - 208Pb indicate radon, thoron and their 

short half-lived decay products. 

Among these natural ionizing radiation sources, cosmic radiation contributes only to the 

external exposure of humans, whereas cosmic radiation induced radionuclides (for example 
14C) and terrestrial radionuclides (detailed below) contribute to both external and internal 

exposures. External exposure of these radionuclides is mostly due to their emitted γ-rays and 

internal exposure is due to their deposition in the human body and their emitted α- and also β- 

and γ-radiation. 

Cosmic 
including 
neutrons

15 %

Cosmogenic 
nuclides

0.6 %

40K
14 %

87Rb
0.3 %Radon -214Pb

46 %

Other from 
238U series

10 %
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6.7 %

Other from 
232Th series
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Contributions from radon and thoron, and their respective progenies to the effective dose 

need to be considered separately. Radon and its decay products contribute 46 %, whereas 

thoron and its decay products only 6.7 % (Fig.1.) to the worldwide average value. These 

amount to about 1.1 mSv y-1 and 0.16 mSv y-1, respectively, which is mostly due to internal, 

in this case inhalation exposure. Assuming that (1) these average effective doses of both radon 

and thoron are generated mostly due to inhalation and that (2) the inhalation dose from any 

other sources is ignored, it can be calculated that 87 % of the inhalation dose is due to radon 

and its progenies and 13 % is due to thoron and its progenies in an average environment 

(Eisenbud and Gesell 1997). Based on UNSCEAR (2000), the contribution of thoron to the 

inhalation dose is only 8 %. However, elevation of this average contribution can be expected 

in special environments, like adobe dwellings of this study. 

2.2. Physics and geochemistry of terrestrial radionuclides 

Among terrestrial radionuclides the 238U and 232Th decay series, including radon and 

thoron (Fig.2.) and 40K contribute with the most significant proportions to the average annual 

effective dose of humans, both externally and internally. For this reason, also the NORM 

(Naturally Occurring Radioactive Material) and TENORM (Technically Enhanced Naturally 

Occurring Radioactive Material) acronyms generally refer to the amount of these 

radionuclides in any material, for example in building materials and all of the building 

material radiation hazard indices used in the literature are based on their activity 

concentrations. 
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Fig.2.: The 238U and 232Th decay chains showing the half-life (given exact numbers and tone) 

and the decay type and energy of each isotope. 

It is known that in both of the 238U and 232Th decay series, secular equilibrium can be 

present due to the long half-lives of parent nuclides and the much shorter half-lives of their 

progenies (Fig.2.). This equilibrium is usually considered to set after five times the half-lives 

of the progenies, and then the activity of the progenies becomes equal to that of the parent 

with 3 % accuracy. Deviations from secular equilibrium in these decay chains occur 

frequently due to the fact that radon and thoron can leave the solid materials due to their 

gaseous forms. In the 238U decay series the different geochemical behavior of 226Ra together 

with its significantly long half-life can also break the equal activities of nuclides. Other 

deviations are not probable.  

Below the most important physical, nuclear (NuDat 2.6, http://www.nndc.bnl.gov/nudat2/) 

and geochemical (Takeno 2005) properties of the long half-lived parent nuclides, 238U and 
232Th, and the secular equilibrium breaking nuclides, 226Ra, radon and thoron are summarized 

together with the properties of 40K. 
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2.2.1. 238U parent nuclide 

The 238U has a half-life of 4.47 billion years and decays through α-radiation as →

. Its average activity concentration in Hungarian soils is 29 Bq kg-1 and 

concentration is 2.3 ppm (UNSCEAR 2000), it is the most abundant isotope of the element 

uranium with 99.3 % (NuDat 2.6). 

Uranium element occurs in three oxidation states: U6+ in oxidative environment, U4+ in 

reductive environment and U5+ (Takeno 2005). Its solubility in water is the highest in the 

form of U6+, therefore uranium is dissolved in water when the environment is oxidative as 

uranyl ion (UO2
2+) or it forms complexes, for example, with CO2

3-. As soon as the 

environment gets reductive, uranium precipitates in minerals like uraninite (UO2) or coffinite 

(Takeno 2005). Dissolved uranium may be reabsorbed by an ion exchange mechanism on clay 

minerals. Uranium is an incompatible element, thus its abundance is higher in the Earth 

continental crust than in the mantle. Igneous silicate-rich rocks, like granite, rhyolite and 

pegmatite usually have elevated uranium content.  

2.2.2. 232Th parent nuclide 

The 232Th has a longer half-life than 238U, 14.0 billion years. Its abundance in the 

environment is higher than that of 238U, its average activity concentration is 28 Bq kg-1 in 

Hungarian soils (UNSCEAR 2000) which is equal to about 6.9 ppm. Its isotopic abundance is 

100 %. It decays via emitting α-particle: →  (NuDat 2.6). 

The thorium – as an element – exists only in one oxidation state such as Th4+, which is 

indissoluble in water. It occurs in oxide-, silicate- and phosphate-minerals, for example, 

thorianite (ThO2), thorite [(Th)SiO4] and cheralite [(Ce,Ca,Th,U)(P,Si)O4] in the monazite 

group (PV1., 2. and 4.), respectively (Takeno 2005). Any thorium released into solution is 

rapidly sorbed by clay minerals and hydrolyzed to Th(OH)4 which is intimately associated 

with the clay mineral fraction. Thorium, such as uranium, is an incompatible trace element, 

however it can enter some rock-forming minerals, therefore it is not as strongly concentrated 

in the pegmatite phases as uranium. 

2.2.3. 40K parent nuclide 

The 40K has a half-life of 1.25 billion years. Its 89 % decays through β--radiation as 

→  and its 11 % through electron capture as → . 

Its average activity concentration in Hungarian soils is 370 Bq kg-1 and concentration is 
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11 970 ppm (UNSCEAR 2000). Its isotopic abundance is 0.0117 % (NuDat 2.6), however 

other natural potassium isotopes are not radioactive. 

The element potassium occurs in the oxidation state of K+ (Takeno 2005), it is a major 

element in the Earth crust. In soils the K+ ions are fixed in 2:1 type clay minerals’ interlayers 

such as in illite group.  

2.2.4. 226Ra 

This radium isotope has a half-life of 1600 years and, such as 238U and 232Th, decays via 

emitting an α-particle: →  (NuDat 2.6). Its average activity concentration in 

Hungarian soils is 33 Bq kg-1 (UNSCEAR 2000). 

The element radium exists in one oxidation state, Ra2+, in the environment. It forms strong 

complexes in natural waters and can be present in RaSO4 form at pH between about 2 and 12 

and in RaCO3 form at pH above about 12 (Takeno 2005). Radium ion is absorbed on clay 

minerals, and on oxides, carbonates, as well (IAEA 1986). As shown above (Fig.2.), the 226Ra 

is the only isotope in both 238U and 232Th decay chains before radon and thoron, which 

potentially can lead to deviations in the secular equilibrium. It is due to the different 

geochemical properties of uranium and radium and its significantly long half-life which last 

property is not true for the 224Ra isotope in the 232Th decay chain.  

2.2.5. Radon and thoron 

The 222 mass number isotope of radon (222Rn, Rn) in the 238U decay chain has a half-life 

of 3.82 days but its 220 mass number isotope, called thoron (220Rn, Tn) in the 232Th decay 

chain has a much shorter half-life of 55.6 seconds (NuDat 2.6). Parent nuclide of both 

isotopes is a radium isotope, the 226Ra for radon and the 224Ra for thoron decaying via 

emitting α-particles. When radon and thoron are formed in the rock, soil or building material 

from radium, they are recoiled into the opposite direction as the α-particle goes. The recoil 

length of radon is typically 30-50 nm in solid materials, 95 nm in water and 64 000 nm in air 

(Tanner 1964, 1980, Porstendörfer 1994). These values for thoron are considered to be the 

same, although they should be slightly higher due to the higher α-energy in its formation (5.69 

MeV vs. 4.78 MeV, Fig.2.). Radon element is a heavy inert gas which can recoil out from, 

migrate in and leave solid materials, get to their pore volume filled with air or water, and then 

reach the free air before it decays. It is soluble in water (e.g. groundwater, soil water, pore 

water etc.) in which its diffusion coefficient is reduced. Radon and thoron themselves also 
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decay through α-radiation: →  and → . Their decay 

products are polonium, lead, bismuth and thallium isotopes (Fig.2.) and they emit α-particles, 

electrons (β-decay) and consequently γ-radiation with the given energies on Fig.2. 

2.3. Radon and thoron in the human environment 

Among terrestrial radionuclides, radon and thoron cause the highest average effective 

doses (Fig.1.). In this chapter the processes leading to their interactions with the human body 

are summarized.  

2.3.1. Radon and thoron emanation and exhalation of rock, soil 

and building material 

Characterizing potentials of solid materials for emitting radon and thoron, two processes 

and measures are applied in the literature (e.g. Porstendörfer 1994). Emanation is the process 

of the radon and thoron nuclei recoiling into or diffusing (Porstendörfer 1994) to the pore 

volume of the rock, soil or building material. Whereas, exhalation is the process of the 

emanated radon and thoron leaving the pores and reaching the atmosphere or a closed air 

volume. 

The radon and thoron emanation of any solid material depends on its parent nuclide (226Ra 

and 224Ra) activity concentration and the emanation fraction (also called as emanation power 

or factor). The emanation itself is usually given as the activity of radon or thoron leaving a 

unit mass of a sample (E’, Bq kg-1 s-1) but also can be calculated for a unit sample volume 

named later as thoron generation rate (G, Bq m-3 s-1). These two values can be transferred 

simply to each other by knowing the density (kg m-3) of the material. However, in this work 

the emanation of adobe building material samples is given as the number of radon or thoron 

atoms leaving a unit mass of a sample (E, kg-1 s-1)1. This unit provides the possibility to better 

compare the results for the two isotopes2. The emanation fraction describes the proportion 

(%) of radon or thoron atoms in the pore volume and the total number of radon or thoron in 

the sample. The typical radon emanation fraction for rocks and soils ranges from 5 to 70 % 

(Nazaroff et al. 1988, PV9.). Some experimental studies show that this value ranges from 0.2 

                                                 

1

 
, where λ is the decay constant of radon or thoron. 

2When the activity is given (Bq kg-1 s-1), any emanation measurement results show orders of magnitude 
higher values for thoron isotope than for radon due to their highly different half-lives, consequently decay 
constants. 
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to 30 % for building materials and in case of thoron, from 0.2 to 6 %. Building materials 

treated under relatively high temperatures are characterized by the lowest emanation fractions 

(Porstendörfer 1994 and references therein, Sas et al. 2012, Sas 2012). 

The radon and thoron exhalation depends on the emanation, consequently the radium 

content and the emanation fraction, and the exhalation fraction. The exhalation is meaningful 

to give as the radon and thoron activity leaving the solid material through a unit surface 

(Bq m-2 s-1), however, sometimes it is expressed like emanation, for a unit mass or volume of 

a sample. This causes inconsequences in the literature which should be solved. Mostly in this 

last case, the geometry of the sample strongly influences the exhaled and measured radon and 

thoron activity concentrations, which are used then to calculate the exhalation of the material. 

The exhalation fraction describes the proportion (%) of radon or thoron atoms leaving the 

material and the total number of emanated radon or thoron atoms in the pore volume. When 

samples are analyzed (not soil or surfaces of thick walls), and at least one of their widths is 

smaller than the diffusion length of radon or thoron in them, the exhalation fraction gets close 

to 100 %. Due to the difference between the half-lives of the two isotopes, this sample width, 

which the nuclides can diffuse through, is much higher for radon than for thoron. 

There are more properties of a rock, soil or building material which influence its radon and 

thoron emanation and exhalation fractions. Two of them, the grain size distribution and the 

moisture content are highly relevant to this research and described below. In this work the 

grain size distribution is determined and it is considered directly, whereas the moisture 

content is considered indirectly. 

2.3.1.1. The grain size distribution as emanation-exhalation 

affecting property 

The grain size distribution significantly influences the value of the specific surface area on 

which the radon and thoron can be emanated trough from the grains. In soils the smallest 

sized minerals are usually the clay minerals originated from weathering processes of rocks. 

Small grains have a comparably higher specific surface area than large grains (e.g. Weiszburg 

and Tóth 2011). This is resulted in an expected positive correlation between the proportion of 

the small grain size fraction and the emanation fraction (partially in PV1., 2., 5. and 7.) which 

is studied in this work. Beside this, a relationship with the value of specific surface area 

estimated from the grain size distribution can also be expected. These considerations above 

assume that uranium, thorium and radium are homogeneously distributed in the grains. 
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However, note that Greeman and Rose (1996) showed that about half the soil gas radon in 

their study results from radium in organic matter and related surface coatings on grains, with a 

relatively high emanation coefficient. 

At the same time, the grain size distribution influences the permeability of materials and, 

therefore, its radon and thoron exhalation. Thoron exhalation is expected to be more 

significantly influenced than radon due to its much shorter half-life. However, both of the 

exhalation fractions are reduced with a decrease in permeability. This decreased value can be 

due to a heterogeneous grain size distribution (small grains fill the pore volume of large 

grains) or when swelling clay minerals are present.  

As shown above, the uranium, thorium and radium are all can be also enriched in clay 

minerals in the small grain size fraction due to their geochemical properties. As a 

consequence, the parent nuclide contents of different materials can show correlation with the 

proportion of small grains in their grain size distributions. This might be influencing the 

emanation and exhalation via the total number of radon and thoron. 

2.3.1.2. The moisture content as emanation-exhalation affecting 

environmental factor 

The influence of moisture content on emanation and exhalation fractions and consequently 

emanation and exhalation was studied and described by many authors (e.g. Tanner 1980, 

Porstendörfer 1994 and references therein: e.g. Ingersall 1983, Megumi and Mamuro 1974, 

Stranden et al. 1984). This influence first originates from that the recoil length of radon and 

thoron is three orders of magnitude longer in air than in water (64 000 nm vs. 95 nm, Tanner 

1980). Therefore, some water present around the source grains (hygroscopic water) is 

advantageous (“optimal”) to keep the gases in the pores via avoiding them to recoil into a 

neighboring grain and not get emanated. Secondly, if the whole pore is filled with water, the 

emanated radon and thoron cannot leave the pores easily. In this case they dissolve in the 

water filling the pores and since their diffusion length is shorter in water than in air, the 

exhalation gets reduced.  

Experimental studies pointed on a great decrease of the emanation for moisture contents 

below 5 % (e.g. Sas 2012, Strong and Levins 1982) or a sporadic increase in exhalations up to 

moisture content of 8 % and a decreasing tendency over this value (Hosoda et al. 2007). In the 

latter study the porosity was given to be 30 %. Therefore, the some %-es of moisture content 

refer to the presence of some thickness of hygroscopic water, whereas the rest of the pore 
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volume is filled with air. This must have been the case in the study of Hassan et al. (2011) for 

the “wet” samples, which all showed increased radon emanation fractions compared to 

“normal” and “dry” conditions. 

2.3.2. Indoor accumulation of radon, thoron and their solid decay 

products 

Radon is usually considered to accumulate indoor originated from the rock or soil below 

the buildings. This is the reason why radon risk mapping can be performed based on the 

properties of geological environments, like 238U-226Ra content (PV3. and references therein: 

Kemski et al. 2001, Kohli et al. 1997, Wattananikorn et al. 2008) or more precisely and 

frequently based on soil gas radon activity concentration (SJ3.), and permeability 

measurements (e.g. Szabó et al. 2013). In other cases, indoor radon activity concentration 

measurements are performed when the results can highly be influences by the structure of the 

studied buildings (e.g. Minda et al. 2009). Note that in this present study all adobe dwellings 

are one-storied buildings without basements, hence further evaluation of their structure can be 

avoided. Radon can also accumulate indoor originating from building materials which can be 

typical of different areas. In this case, its short half-lived isotope, thoron also should be taken 

into account. Thoron does not have enough time to migrate far before it decays. Therefore, 

while the radon gas is approximately homogeneously distributed in the indoor air, thoron 

activity concentration is high close to its source, some types of walls and drops drastically 

towards the center of the room. However, thoron decay products are evenly distributed (e.g. 

Urosevic et al. 2008). 

The most important aspects of radon and thoron solid decay products are summarized 

based on Porstendörfer (1994). After their formation, these freshly generated radionuclides 

react very fast and become small particles, called clusters or "unattached" radionuclides. Then 

they attach to the existing aerosol particles in the atmosphere. In buildings, the deposition of 

the radionuclides on walls and furniture is an important parameter. Describing the amount of 

progenies in buildings three values are defined here. One of these is the potential alpha 

energy concentration (PAEC), which is the sum of alpha energies emitted during the decay of 

radon up to 210Pb progeny or thoron up to 208Pb progeny (Fig.2.). The equilibrium-equivalent 

concentration of a non-equilibrium mixture of short-lived progenies in air is the activity 

concentration of radon or thoron in radioactive equilibrium with their short-lived progenies, 

which has the same potential alpha energy concentration as the actual non-equilibrium 
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mixture. The equilibrium factor is the ratio of equilibrium-equivalent concentration to the 

actual activity concentration of radon or thoron. This factor characterizes the disequilibrium 

between the progeny mixture and their parent nuclide. Determinations of the equilibrium 

factor for radon indoors generally confirm a typical value of 0.4 (UNSCEAR 2000, 2006), i.e. 

most of the values are within 30 % deviation (Hopke et al. 1995, Ramachandran and Subba 

Ramu 1994). In case of thoron this value is expected to be one order of magnitude lower, and 

a 0.04 average equilibrium factor is determined by Harley et al. (2010) based on 

measurements in numerous dwellings. However, this average value is determined with a 

much high standard deviation than radon. 

2.3.3. Characteristics of radon and thoron health effects and 

modifying circumstances 

Since both radon and thoron and most of their progenies emit high-LET (linear energy 

transfer) α-radiation, the resulting ionization after their inhalation mostly happens in tissues of 

the lung. Some already almost twenty years old publications (e.g. Porstendörfer 1994, 

Steinhäusler 1996) already note that due to its comparably long, i.e. 10.6 hours half-life, the 
212Pb thoron descendant (Fig.2.) can even reach the blood flow and affect other parts of the 

body beside the lung. The differences between the effects of the radon and thoron isotopes are 

also shown in their dose conversion factors, which are 9 nSv (Bq h m-3)-1 for radon and 

40 nSv (Bq h m-3)-1 for thoron (UNSCEAR 2000, 2006). This high value for thoron is 

intended to also include the dose to organs other than lung. In this study the above presented 

values are applied, however, it should be noted that these values might need general 

reevaluation (Zagyvai, personal communication, 2013) for the following reasons: (1) the dose 

from thoron decay products affecting the organs other than lung is missing from the lung itself 

and in the opinion of the author (2) the not negligible proportion of thoron gas itself in the 

inhalation dose (e.g. Steinhäusler 1996) needs to be recognized and evaluated for different 

thoron gas and thoron decay product mixtures (for a continuum from near wall to middle of 

room environments). The actually received effective doses also depend on the indoor present 

aerosol concentration and aerosol size distribution (e.g. Porstendörfer 1994, 

Steinhäusler 1996). 

As seen above, all of the average effective doses received from natural sources 

(2.4 mSv y-1) are much below the 100 mSv order of magnitude level, which above it is seen to 

have significant stochastic radiation risk increase (e.g. ICRP 2008). However, due to the 
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natural variation in the presence of radionuclides, in some environments significantly higher 

inhalation doses can be derived from radon and thoron than the average in the 1 mSv y-1 order 

of magnitude. Although, even if these elevated effective doses are received the radiation risk 

increases only with the acceptance of the still recommended LNT (linear non-threshold) 

model in the low dose range (ICRP 1990, 2005, 2007, 2008), which assigns the borders of this 

research.  

At the same time for radon and, consequently, also for thoron the 100 mSv effective dose 

“threshold” for low doses is not obvious. Recent studies (Madas and Balásházy 2011) 

describe a much higher local tissue dose resulted from the determined effective dose of radon 

inhalation because of its inhomogeneous distribution in the lungs. This explains why it has an 

elevated health impact resulted in the observed elevation of lung cancer risk in 

epidemiological data (Darby et al. 2005, WHO 2009). Considering that the number and size 

distribution of aerosol particles are characterizing the behavior of radon and thoron decay 

products, smoking habits seem to increase the radiation risk originated from their inhalation 

(Bochicchio 2008).  

2.4. Applied thresholds and reference levels 

To limit the building materials’ excess external γ doses due their NORM and TENORM 

contents, different building material hazard indices are used in the literature. These and their 

applied threshold values are detailed in Chapter 4.1.3.1. However, the reference dose is 

similar and it falls into the 1 mSv y-1 (EC 1999, Trevisi et al. 2012) order of magnitude. 

Whereas IAEA (2003) also reports radiation protection against radon at workplaces, in this 

study solely the recommendation of the World Health Organization (WHO 2009) is 

considered for residential indoor radon activity concentrations. WHO proposes an annual 

indoor radon activity concentration reference level of 100 Bq m-3 and declares that the chosen 

national reference level of any country should not exceed 300 Bq m-3 (ICRP 2007). This 

corresponds to about 10 mSv y-1 order of magnitude effective dose (ICRP 2009). In Hungary 

the 300 Bq m-3 level seems to be more reasonable to compare the measured indoor radon 

activity concentration values also fitting into the ALARA (as low as reasonable achievable) 

principle and lower the expectations to a reasonable level. Such a recommendation, i.e. 

reference value does not exist for thoron gas itself. The author decided to compare the results 

to the same activity concentration of 300 Bq m-3, however, its much lower connected dose is 

emphasized mostly due to the one order of magnitude lower equilibrium factor of thoron.
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3. HUNGARIAN ADOBE DWELLINGS 

3.1. The adobe building material 

Most of the information collected in this sub-chapter is originated from local people who 

the author met during the numerous field campaigns.  

The adobe used to be the cheapest building material at certain parts of the country mostly 

because it was always made locally. People building their own houses made the adobes, 

sometimes referred as adobe bricks, also themselves or with the help of local professionals, 

who were well appreciated in this era. Where the suitable raw materials were easily available, 

several adobe dwellings were built and still a significant portion exists. Most of these 

dwellings are from between 1930 and 1960, so about 50-80 years old. The tradition of 

building adobe houses is also being revived since they are considered to provide a healthy, 

“breathing” natural indoor environment. 

Adobes are always made of inorganic and organic raw materials which are mixed with 

water to provide a muddy body, and then this mud is pressed into wooden frames to dry out in 

sunshine. No burning procedure is applied in this process. The inorganic raw material is 

basically a suitable, usually clayey, loamy soil either collected at the edge of the settlement or 

right next to the building itself. It is already very difficult or even impossible to find the 

original place of adobe preparation. The clay mineral content of the used soil has an important 

role to contain the natural radionuclides, the parent nuclides of radon and thoron and also to 

provide a significant specific surface area for the emanation process. The organic raw 

materials used are most frequently shelling, straw or chopped straw and they are added to 

build up the structure of adobe and make it more solid and elastic. After the evaporation of 

water from the adobe structure, the organic materials make the blocks to keep their shapes. If 

swelling clay minerals (e.g. smectites) are present, the inorganic component volume decreases 

leaving pores behind after losing the water content during the drying procedure. The 

remaining increased pore volume and permeability helps the exhalation process. For these 

reasons, beside the lack of burning treatment (Sas et al. 2012, Sas 2012), adobe building 

material is quite probable to exhale significant amounts of radon and thoron even if their 

NORM content is close to that of regular soils (29 Bq kg-1 for 238U, 28 Bq kg-1 for 232Th, 370 

Bq kg-1 for 40K, 33 Bq kg-1 for 226Ra, UNSCEAR 2000). 

Adobe dwellings are usually one-storied buildings without cellars. Their bases are even 

strengthen by stones or concrete only if located close to possible flooded areas, otherwise 
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rammed soil is found below the floor. The raw materials, the lack of burning process and the 

separation between the wall and the soil are all contributing to the sensitivity of adobe 

dwellings for precipitation. 

3.2. The studied areas 

3.2.1. Relevant information in the selection process 

For the study of terrestrial radioactivity in adobe dwellings several distinct areas were 

decided to choose. In the selection process the following relevant factors were needed to take 

into account. Among these the most important one was the existence and the relatively high 

frequency of adobe buildings at the area. Another property taken into account was the geology 

of the well-known typical areas with many adobe dwellings. Different geological settings 

were considered to be advantageous in the general representativeness of the study to be able 

to make a statement about maximum health impact of living in Hungarian adobe dwellings. In 

the selection process, the level of the already published RAD Labor indoor radon data 

(Hámori and Tóth 2004, Minda et al. 2009, Tóth 1999) played also an important role. Due to a 

correlation between the amount of 226Ra and 232Th and also between radon and thoron 

measures indicated in many studies, the elevated radon level selection criterion seemed to be 

ensuring to find the most significant localities of elevated thoron presence. Note that the 

planned field work highly involved the contribution of local people, hence the selection 

process made a preference to sites where the author or her supervisors, colleagues had 

relatives or friends. 

3.2.2. The locations of sampling and in-situ measurements 

Based on the aspects detailed above, three distinct areas were selected for collecting 

adobe samples. These areas of study are (1) the central-north part of Békés County 

(SE-Hungary), which is the largest size area among the three and located at the geographical 

unit of the Grate Hungarian Plain, this is the most typical and hence representative area of 

average Hungarian adobe dwellings, (2) the E-Mecsek Mts. (S-Hungary) which is well-known 

for its granite bedrock and the connected elevated indoor radon activity concentrations at 

some settlements (RAD Labor), and (3) the Sajó and Hernád Rivers Valleys (S-H Rivers 

Valleys, NE-Hungary) where also high indoor radon levels were detected (RAD Labor) 

(Fig.3.). Six-seven settlements at each area, 19 settlements in total were selected to find help 

from local people in the collection of building material samples. These settlements are 
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Gyomaendrőd, Gyula, Kondoros, Sarkad, Sarkadkeresztúr, Újiráz (officially not belonging to 

Békés County), Vésztő at Békés County; Bátaapáti, Erdősmecske, Fazekasboda, Feked, 

Mórágy, Véménd at E-Mecsek Mts.; and Alsódobsza, Hernádnémeti, Sajóhidvég, 

Sajókeresztúr, Sóstófalva, Újcsanálos at Sajó and Hernád Rivers Valleys (Fig.3.). The number 

of areas of study for in-situ measurement campaigns was more limited by different reasons 

(e.g. budget, time and the local help). Therefore, this part of the research was performed only 

at one of the three areas, which was chosen to be Békés County. The campaigns focused on 

the same settlements (Fig.3., Békés County) as the building material sampling, however in 

very few cases on the same dwellings due to the low number of volunteers.  

 

  

Fig.3.: The location of the three studied areas, Békés County, E-Mecsek Mts. and Sajó and 

Hernád Rivers Valleys in the Pannonian Basin and the approximate locations of the 19 

selected settlements. 
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Influencing the indoor radon and thoron activity concentrations and their variations, the 

climatic conditions of the studied areas are summarized below (OMSZ, 

http://www.met.hu/eghajlat/magyarorszag_eghajlata/). The whole area of Hungary is 

characterized by a European continental climate with warm summers (20 ºC), cold winters (0 

ºC) and mild springs and autumns (10 ºC). However, small differences among the studied 

areas are observed. The annual average temperature is 10-11 ºC at the Great Hungarian Plain 

(Békés County), which is slightly lower at the E-Mecsek Mts. and the Sajó and Hernád Rivers 

Valleys (9-10 ºC). The precipitation falls mostly during the summer months (especially June) 

and the least in the winter season (especially February). The annual average precipitation is 

500-550 mm at the studied areas of Békés County and Sajó and Hernád Rivers Valleys; and 

about 100 ml more at E-Mecsek Mts. 

3.2.3. Geology of the studied areas 

Since the inorganic raw material of adobe is always originated from the edges of the 

settlements or right next to the buildings, the type of local geology can be expected to play an 

important role in the terrestrial radioactivity levels in adobe building material and dwellings. 

Therefore, in this sub-chapter, the most probable geological sources of adobe building 

materials are summarized at each studied areas and settlement, based on the 1:100 000 

geological map of Gyalog (2005) and the online geological map on the home site of MFGI 

(http://loczy.mfgi.hu/fdt100/). 

3.2.3.1. Békés County 

The major raw material of local adobe at this area is the prevailing fluvial sediments of 

Körös and Berettyó rivers, tributaries of Tisza River. All sediments located at the studied 

settlements are Quaternary formations originated most probably from the Carpathians (Fig.4., 

where the missing right-bottom part today does not belong to the area of Hungary.).  

Due to the comparably simple geology of Békés County and the good enough information 

from local people, each selected settlement can be characterized by one specific geological 

formation. Therefore, based on the type of the most probable geological source of adobe 

(Gyalog 2005), the settlements are divided into three groups: 

 clay: Gyomaendrőd, Vésztő, Kondoros,  

 loess: Gyula, Sarkad, Sarkadkeresztúr, and  

 turf: Újiráz.  
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Based on the geological age, the following two groups can be distinguished:  

 Pleistocene: Gyula, Kondoros, Sarkad, Sarkadkeresztúr, and  

 Holocene: Gyomaendrőd, Újiráz, Vésztő.  

All of these groups are used later in the evaluation process of in-situ measurement results. 

However, note that the adobe making process might have inorganic raw material preference, 

hence more homogeneous than the geology predicts. 

 

 

Fig.4.: The location of the studied settlements at Békés County, SE-Hungary on the geological 

map of the area (MFGI, http://loczy.mfgi.hu/fdt100/). The relevant colors on the map are the 

white, light green, dark green, and purple representing Holocene clay, Pleistocene clay, 

Pleistocene loess, and Holocene turf formations, respectively. 
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3.2.3.2. E-Mecsek Mts. 

This studied area is known about its Paleozoic granite bedrock (Fig.5.), which type of rock 

tends to have elevated terrestrial radionuclide content. However, here the major raw material 

of local adobe is probably the characteristic Pleistocene loess, which is followed in abundance 

by Pleistocene-Holocene aleurite and then Holocene alluvial sediment formations. 

 

 

Fig.5.: The location of the studied settlements at E-Mecsek Mts., S-Hungary on the geological 

map of the area (MFGI, http://loczy.mfgi.hu/fdt100/). The relevant colors on the map are the 

red, mauve, sand (yellow), and white representing Paleozoic granite, Pleistocene-Holocene 

aleurite, Pleistocene loess, and Holocene alluvial sediment formations, respectively. 
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3.2.3.3. Sajó and Hernád Rivers Valleys 

The area of Sajó and Hernád Rivers Valleys is the most characterized by the fluvial 

sediments of Sajó and Hernád rivers, tributaries of Tisza river. Therefore, the major raw 

material of local adobe is Holocene and Pleistocene-Holocene fluvial sediments like clay 

mixed with aleurite or sand mixed with aleurite, or it can either be Pleistocene loess and 

Pleistocene deluvial sediment, which are also characteristic of the environment of studied 

settlements (Fig.6.). 

 

 

Fig.6.: The location of the studied settlements at Sajó and Hernád Rivers Valleys, NE-

Hungary on the geological map of the area (MFGI, http://loczy.mfgi.hu/fdt100/). The relevant 

colors on the map are the white, sand, mauve and turquoise representing Holocene fluvial 

sediments like clay mixed with aleurite or sand mixed with aleurite, Pleistocene loess, 

Pleistocene deluvial sediment and Pleistocene-Holocene fluvial sediment formations, 

respectively.  
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4. MEASUREMENT AND STATISTICAL METHODS 

4.1. Methods of laboratory measurements on samples 

4.1.1. Sampling strategy 

Adobe building material blocks and pieces were collected at all the 19 selected settlements 

of all three studied areas of Békés County, E-Mecsek Mts. and Sajó and Hernád Rivers 

Valleys (Fig.3.). Altogether 46 adobe samples were collected and studied; among these 18 

from Békés County (three-three from Gyomaendrőd, Gyula, Sarkad, Újiráz and Vésztő; two 

from Kondoros; one from Sarkadkeresztúr), 18 from E-Mecsek Mts. (three-three from all 

settlements of Bátaapáti, Erdősmecske, Fazekasboda, Feked, Mórágy and Véménd) and 10 

from Sajó and Hernád Rivers Valleys (three-three from Alsódobsza and Sajóhidvég; one-one 

from Hernádnémeti, Sajókeresztúr, Sóstófalva and Újcsanálos). 

The sampling campaigns were carried out in five turns in 2009 and 2010 years. Only very 

few samples were taken after these campaigns. At each settlement always three adobe 

samples were aimed to collect, however, this was not always possible. The help of local 

mayors, people from mayor offices or widely known local people and also volunteering house 

owners were needed to find adobe building material samples to take. The most effective way 

of gaining samples was to try to find adobe dwellings under renovation or where a part of the 

building itself or any of its side buildings had collapsed and ask for a block from the owners if 

they were available3. The samples had usually the sizes of the blocks being in the buildings 

(widths in the 10 cm, mass in the 1 kg order of magnitude). All collected adobes were kept on 

lab air before any laboratory analysis to reduce their moisture content to the same natural 

level best representing the real conditions in dwellings. 

Representativeness 

The number (one - three) and quality of collected samples from each settlement are 

considered to represent the adobe building material of that given settlement. The samples at a 

studied area (10 - 18 pieces) are assumed to represent the adobe building material of that 

given studied area. Some samples were collected from collapsed dwellings or side buildings; 

these are considered originating from the same soil and made on the same way as other 

                                                 
3It represents well, how difficult any building material sampling is that on a sampling trip, the author was 

almost arrested by the police thanking to a belligerent house owner. At the end, the policemen provided one of 
the adobe blocks. 
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adobes of the settlement. Keeping the natural moisture content of the samples (no oven 

drying) ensures that they behave as in their original environment in the dwelling. 

4.1.2. Radon and thoron emanation determination by closed 

chamber technique 

The applied closed chamber technique provides appropriate radon and thoron emanation 

data of the analyzed samples after some methodological considerations as seen below. 

However, at the end of the analysis procedure, the gained values are connected and 

considered to refer to the radon and thoron exhalation potential of the building material. 

4.1.2.1. The general description of the experimental setup 

The determination of emanation values was carried out at Lithosphere Fluid Research Lab, 

Eötvös University. The suitable experimental setup (Fig.7.) consists of a cylindrical 

aluminum sample holder with a height of H = 9.5 cm and a cross-sectional area of A = 38.5 

cm2, plastic tubing, a gas-drying unit filled with desiccant (CaSO4 with 3 % CoCl2, as 

indicator), an aerosol filter and a RAD7 radon-thoron detector with a calibrated induced air 

flow rate of q = 11 cm3 s-1 (Fig.7.) (Durridge Co. 2013). All connections were insulated by 

parafilm (product of the Pechiney Plastic Packaging Company). Vstandard (Fig.7.) represents a 

volume equal to that of a “standard RAD7 inlet filter, a 3-foot long, 3/16 inch inner diameter 

vinyl hose, and a small (6 inch) drying tube” (Durridge Co. 2013) and Vdet (Fig.7.) is the 

750 cm3 detector volume of RAD7 (Durridge Co. 2013, SJ4.). The values of h, d and Vnet 

(Fig.7.) also play important roles in the followings, h is the sample thickness in case of 

cylindrical samples, d is the sample width in case of cubical samples and Vnet is the rest of the 

volume of the sample container above the sample, which is determined as  

or . 

The measurement device RAD7 (Fig.7.) determines radon and thoron activity 

concentrations by measuring the α-counts of their progenies (218Po, 216Po, 214Po, 212Po and 
212Bi), which are formed in the detector cell. However, the vendor of RAD7 needs to provide 

a correction with the instrument to determine the correct 218Po counts and consequently the 

correct radon activity concentration as this radon progeny overlaps with the thoron progeny 
212Bi in the α-spectra (100% 6.115 MeV and 36% 6.207 MeV, respectively, NuDat 2.6). 

However, this built in correction in some cases was proven not to be sufficient enough and a 

further correction was needed (PV1. and 2.). In this present study of adobe building material 
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samples, this further correction provided by the author (PV1. and 2.) turned out to be not 

necessary to apply, hence not described in details. 

 

 

Fig.7.: Schematic representation of the experimental setup. The red/blue arrows mark the 

path of radon and thoron. Find further explanation in the text above and SJ4. 

4.1.2.2. Behavior of radon and thoron in the experimental setup – 

explaining specific aims of the study 

After closing an air volume above the sample, the activity of radon and thoron leaving the 

sample is accumulating as Eq.1. (Stranden, 1988) describes. 

 

 (Eq.1.) 

 

where T(t) is the increasing total radon or thoron activity in the air volume available above the 

sample (Bq), R represents the rate of radon or thoron activity leaving the sample within a unit 

time (Bq s-1), λ is the decay constant of radon or thoron (s-1) and t is the accumulation time, 

i.e. the time elapsed since the closure of the sample (s). The described activities increase 

following the exponential growth and attain near constant values when t >> the half-life of 

radon or thoron (e.g., t ≥ five times the half-lives) (e.g., Krishnaswami and Cochran, 2008). 

Then the exponential part of Eq.1. gets negligible. Therefore, it is stated that it takes about 

three weeks (19 days) until the equilibrium activity (and consequently the equilibrium activity 
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concentration) sets for radon in ideal circumstances and takes about five minutes until it sets 

for thoron with 3 % accuracy.  

For the determination of radon and thoron emanation is the best to measure the equilibrium 

activity concentrations. However, some modifying processes make their determination 

complicated. 

4.1.2.2.1. Modifying processes for radon 

In case of radon, the emanated and exhaled amounts are closely equal in the given 

experimental setup4 due to its long enough, 3.82 days half-life. Hence, the accumulated 

equilibrium activity concentration above the sample directly refers to its radon emanation 

without the need to consider the sample geometry. However, for the same reason, a significant 

portion of radon may leak from the measurement setup via the not perfectly sealed 

connections and the sample container itself. This leakage reduces the total radon activity just 

as its decay and hence modifies Eq.1. to Eq.2. for radon isotope. 

 

 
 (Eq.2.) 

 

where α is the measure of radon leakage giving the proportion of radon atoms leaving the 

experimental setup within a unit time (s-1, or later given in h-1 or % h-1 units due to easier 

handling). Leakage causes deviations in the normal run of radon accumulation on a way that it 

seems to reduce its half-life (λ+α, Eq.2.). This is resulted in a reduced accumulation time 

required (t ≥ five times the “reduced” half-live) until the set of a reduced equilibrium activity 

(or equilibrium activity concentration). 

The author notes that a further modifying process exists for radon, the so-called back 

diffusion (Tuccimei et al. 2006). However, its role is negligible if the pore volume of the 

sample is below 10% of the total volume of the experimental setup (Vnet + Vstandard + Vdet) 

(Petropoulos et al. 2001). Therefore, it is concluded that the back diffusion effect is not 

needed to consider with the given experimental setup (Fig.7.) and the studied sample 

volumes. 

An appropriate radon emanation measurement method which takes into account the radon 

leakage (Chapter 4.1.2.3.1.) is already available. However, it is quite time consuming. One of 

                                                 
4Maximum 5% decrease occurs in the measurable radon activity concentration (exhaled radon) compared to 

that of in the pore volume of the sample (emanated radon). This negligible value is calculated based on the 
thoron model calculations detailed in SJ4. and Chapter 5.2.1. modified for radon isotope.  
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the specific aims of this work is to test an already existing, less time consuming method 

(Chapter 4.1.2.3.2.) for further consideration to use, see Chapter 5.1.  

4.1.2.2.2. Modifying processes for thoron 

Unlike radon, thoron cannot escape from the measurement system due to its short half-life 

(55.6 s). However, there are other difficulties not possible to avoid from:  

(1) In case of this isotope, a significant proportion decays before leaving the pore volume 

of the sample. This means that the emanated and exhaled amounts are not equal from samples 

with sizes larger than a limit determined by the diffusion length of thoron. Therefore, the 

equilibrium thoron activity concentration in the air above the sample is not a linear function of 

the sample thickness (h, Fig.7.) or sample width (d, Fig.7.), hence not directly refers to the 

thoron emanation of the sample. 

(2) Another significant amount of thoron decays along its path in the experimental setup 

(represented by the lightning tone of blue in the arrows on Fig.7.). This decay is already 

considered in the RAD7 factory calibration for Vstandard + Vdet (Fig.7., Durridge Co. 2013). Its 

consequence is that the RAD7 displays the thoron activity concentration assumed to have at 

its inlet, which is about the double of the concentration in the detector chamber 

(Durridge Co. 2013) calculated based on the calibrated induced air flow rate of q = 11 cm3 s-1. 

Despite of this calibration, the resulted equilibrium thoron activity concentration attenuation 

in the volume of Vnet in the sample container (Fig.7.) still has to be taken into account when 

calculating thoron emanation. 

There was not an appropriate thoron emanation measurement/determination method 

available in the literature for the given experimental setup (Fig.7.), which considers both (1) 

and (2) processes. A new data analysis method was required with the regular measurement 

strategy (Chapter 4.1.2.3.2.). Making this available got to be the other specific aim of this 

work, see Chapter 5.2. 

4.1.2.3. Basic types of measurement strategies 

Below two measurement strategies and analysis methods for radon emanation 

determination are described. Both of them aim to measure the equilibrium activity 

concentration above the samples, which is then used for the calculation of radon emanation 

results. In Chapter 5.1. their results are compared. The measurement strategy applicable for 

thoron emanation determination is also signed out which can be used with the new data 

analysis method detailed in Chapter 5.2. 
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For all of the routine measurements, the adobe building material samples were cut to about 

200 g cubic bodies with widths of about 5 cm.  

4.1.2.3.1. Growth curve method for radon emanation determination 

The growth curve (or also named as ingrowth curve) method is frequently found in the 

literature (e.g. Jonassen 1983, Petropoulos et al. 2001, Sakoda et al. 2008, Stranden 1988, 

Tuccimei et al. 2006) and it is based on measuring the accumulation of radon activity 

concentration in the experimental setup from the background until the maximum value. For 

this, the measurement circle (Fig.7.) is closed right after the sample is placed into the sample 

holder and the RAD7 is started. In this study, 30 minutes measurement cycles (integration 

times) were applied for about 10 days of measurement durations5. 

For the analysis of raw data, Eq.3. is described and used. 

 

1  (Eq.3.) 

 

where C(t) is the increasing radon activity concentration above the sample in the air volume 

of the experimental setup (Bq m-3), Cmax is the maximum of radon activity concentration 

reached during the measurement (Bq m-3), Cbg is the radon activity concentration of the 

background, i.e. the starting point of the growth curve (Bq m-3), which is usually close to 0 

(zero). Note that the unit of λ and t must be consequent. 

Fitting Eq.3. for the raw measurement data was performed by Microcal Origin software 

and it gives the values of the two missing but needed parameters, Cmax and α (its unit is the 

same as chosen for λ). These parameters are used in the radon emanation calculations 

described by Eq.4. All of the other needed parameters are known or can be determined easily. 

 

    (Eq.4.) 

 

where E is the radon (or later also thoron) emanation (kg-1 s-1) and M is the sample mass 

placed into the sample container (kg)6. 

  

                                                 
5As described above any radon leakage from the experimental setup reduces the accumulation time until the 

set of a reduced equilibrium activity concentration. Therefore, 19 days (five times the radon half-life) for the 
measurement duration would be unnecessarily long. 

6  
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Advantages and disadvantages 

This method does not require preliminary closing of the sample into the sample container 

and appropriately regards the possibility of radon leakage from the experimental setup. 

Therefore, any randomly occurring, uncontrolled but systematic error is avoided in the 

calculated emanation results. However, the measurement duration by RAD7 is in the 10 days 

of order of magnitude. 

4.1.2.3.2. Equilibrium method for radon emanation estimation 

The equilibrium method was taken into use because it saves time to make the RAD7 

device available for a higher number of experiments and studies.  

In this method, as the first step, the samples studied are closed into separate sample holders 

for at least 19 days. When the accumulation time is over the sample holders, one by one, are 

connected to the RAD7 detector (Fig.7.) theoretically for the determination of the radon 

equilibrium activity concentration. However, the lack of any radon leakage should be 

assumed because it cannot be controlled by calculations. In this study 15 minutes 

measurement cycles for four hours measurement durations (significantly less than 10 days) 

were applied.  

The analysis of raw data is using the following information. The sum of the equilibrium 

activity in Vnet and the background activity in Vstandard and Vdet is equal to the activity of the 

mixed volume of the experimental setup (Vnet, Vstandard and Vdet together) which is measured. 

Adjusting this equality, the radon emanation can be calculated according to the Eq.5. 

 

–  (Eq.5.) 

 

where Cmeas is the average of measured radon (or later also thoron) activity concentrations by 

RAD7 (Bq m-3). 

Advantages and disadvantages 

The most important advantage of this method is that the measurement time by RAD7 is 

enough to be in the maximum some hours of order of magnitude. This fact highly reduces the 

total measurement time for large number of samples, even if it requires the 19 days 

preliminary closing of the samples into sample containers. However, using the equilibrium 

method does not give the possibility to take into account any radon loss due to leakage during 

the actual measurement. Therefore, it is possible that randomly occurring, uncontrolled but 
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systematic error is present in its determined radon emanation values. For testing this method, 

see Chapter 5.1. 

 

In case of thoron isotope, gaining correct equilibrium activity concentration data above a 

sample is simpler since it is set after about five minutes of closure and even no significant 

thoron leakage occurs within this time. Equilibrium thoron activity concentration data can be 

gained from both types of measurement strategies applied for radon. However, a new and 

more complicated data analysis method is required to apply, see Chapter 5.2. 

4.1.3. 226Ra, 232Th and 40K activity concentration determination 

by γ-ray spectrometry 

Activity concentrations of 226Ra, 232Th and 40K in the adobe building material samples 

were determined for the aims of the calculation of different building material hazard indices, 

estimate effective doses and for gaining radon and thoron emanation fractions. 

The measurements were carried out by γ-ray spectrometry using GC1520-7500SL HPGe 

detector7 at the Department of Atomic Physics, Eötvös University. All of the cubic samples 

from emanation measurements were powdered8 filled back to the containers and their γ-rays 

were measured for a minimum of 16 hours. The detection efficiency for γ-photons of 

characteristic energies was determined by the measurement system provided Monte Carlo 

simulation, in which a theoretical elemental composition of montmorillonite (clay mineral) 

was assumed. It ranges from about 0.5 % to 8 % depending on photon-energy, geometry and 

density of the sample. Absolute transition probabilities were taken from the NuDat 2.6.  

The 226Ra analysis was performed based on its 186.1 keV peak, taking into account that it 

overlaps with the 185.7 keV peak of 235U. Both the natural isotopic abundance between 238U 

(99.3 %) and 235U (0.7 %) and secular equilibrium between 238U and 226Ra were assumed 

leading to a 58.3 − 41.7 % ratio (Ebaid et al. 2005) in the count number of the appearing peak 

of 226Ra and 235U, respectively. The latter, more possibly disturbed assumption of secular 

equilibrium between 238U and 226Ra (Chapter 2.2.4.) can be supported by data published about 

surface soils. For example Al-Hamarneh and Awadallah (2009) report the wide presence of 
238U – 226Ra secular equilibrium in 220 surface soil samples. Additionally, in a parallel study 

                                                 
7Detector shielding of 10 cm thickness was applied to reduce the background radiation. The detector was 

cooled to liquid nitrogen temperatures and coupled to a PC-based 4K multichannel analyzer. The energy 
resolution of the detector is 2.0 keV at 1332.5 keV (60Co peak) and its relative efficiency is 15%. 

8To have a standard cylindrical geometry varying only in height. 
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of the author, its generally acceptable existence was determined in coal slag building material 

samples. 

These assumptions had to be applied in the calculations, first of all, because the use of 

peaks of radon decay products for 226Ra activity concentration determination was considered 

disadvantageous in the given experimental setup. The reason is that radon exhaling from the 

sample fills the free volume of the sample container and progenies attach to the inner wall 

also where no sample is present in the upper parts of the volume. Hence, detection efficiency 

of their gamma-photons is undeterminable. This effect can be avoided only if the sample fills 

the whole volume of the container which was difficult to perform for technical reasons. 

Moreover, despite sealing, some radon leakage can also occur in containers without special 

design (SJ5.), which is further reducing the count number of radon decay product peaks. 

Second of all, any possible 186.1 keV peak correction (Yücel et al. 2009), for example with 

the use of 63.3 or 92.6 keV peaks of 234Th (Dowdall et al. 2004, Kaste et al. 2006, Saidou et 

al. 2008) or with the 1001 keV peak of 234mPa (Yücel et al. 1998, Papachristodoulou et al. 

2003) could not be applied neither for different technical reasons. 

The 232Th analysis was done by an interference free 228Ac peak at 911 keV and the 40K 

activity concentration was determined by using its peak at 1461 keV. 

Possible errors and uncertainties 

In γ-ray spectrometry measurement results the statistical uncertainty is mostly originated 

from the γ-peak area determination and the efficiency simulation uncertainties. Systematic 

error might be able to occur due to deviations in secular equilibrium state of 238U and 226Ra.  

4.1.3.1. Hazard indices calculations 

To qualify safety of building materials and limit external dose received by residents, many 

different building material hazard indices are applied in the literature based on activity 

concentrations of 226Ra, 232Th and 40K. They are all widely used in recent publications (e.g. 

Al-Sulaiti et al. 2011, Damla et al. 2011, Moura et al. 2011, SJ2.). In case of adobe building 

materials these indices are not expected to exceed the threshold values, however calculated 

for the aim of gaining a proof, scaling their external radiology hazard and also to provide the 

comparative evaluation of indices (Chapter 7.1.1.1.). 

The most frequently used radium equivalent index is given in the following expression 

(Eq.6.) (Beretka and Mathew 1985, Hamilton 1971): 
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 (Eq.6.) 

 

where Raeq is the radium equivalent index (Bq kg-1), C226Ra is the activity concentration of 
226Ra, C232Th is that of 232Th and C40K is that of 40K (Bq kg-1). The value of Raeq in building 

materials is required to be less than the limit value of 370 Bq kg-1 (OECD 1979) for safe use, 

i.e. to keep the external dose below 1.5 mSv y-1. 

The RP112 (EC 1999) recommends to use the unitless activity concentration index for 

building material qualification. This index is derived to indicate whether the annual dose, due 

to the excess external γ-radiation in a building, may exceed 1 mSv y-1. The applied dose 

criterion was chosen based on Trevisi et al. (2012) who showed that the adoption of another 

possible criterion, 0.3 mSv y-1 is probably too ambitious a health goal, since too many 

materials exceed the value. A background cosmic and terrestrial dose rate of 50 nGy h-1 has 

been used in deriving the index (EC 1999) which is defined in the following way (Eq.7.). 

 

           
1  (Eq.7.) 

 

where I is the activity concentration index and its threshold is 1 (unit). Notice that the value of 

the activity concentration index is not directly an estimate for the effective dose. The only 

case, where the index has the same numerical value as the assessed annual effective dose in 

mSv, is the limit value of 1 (unit, EC 1999). For dose estimation see below in Chapter 4.1.3.2.  

External and internal hazard indices also exist with threshold values 1 (unit), below which 

the building materials can be qualified being safe. The Eq.8. shows the calculation of the 

external hazard index. 

 

           
1 (Eq.8.) 

 

where Hex is the external hazard index. The objective of this index is to limit the radiation 

dose to 1 mSv y-1 (ICRP 1990). This calculation does not take into account the wall thickness 

and the existence of doors and windows (Hewamanna et al. 2001). The internal hazard index 

is described by Eq.9. 

 

           
1 (Eq.9.) 
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where Hin is the internal hazard index. This calculation tries to better consider that 226Ra 

decays to radon, which can accumulate indoors and increase the radiation hazard. The 

denominator of 226Ra activity concentration has been decreased from 370 to 185 Bq kg-1 

(Eq.8. and Eq.9.) (Krieger 1981). This estimation neglects other factors, such as airflow 

patterns, frequency of air changes, and type and porosity of the building materials (Beretka 

and Mathew 1985). The methodology regarding these last two indices is further discussed 

with the help of the results of this study (Chapter 7.1.1.1.). 

4.1.3.2. External effective dose estimation from 226Ra, 232Th and 40K 

activity concentration data in building materials 

According to the RP112 (EC 1999), the total absorbed external dose rate in a room with 

dimensions of 4 × 5 × 2.8 m3, wall thickness of 20 cm and wall density of 2350 kg m-3 

(concrete) can be calculated by using the Eq.10. The background cosmic and terrestrial dose 

rate of 50 nGy h-1 is taken into account like in the case of the activity concentration index (I). 

 

 (Eq.10.) 

 

where Da is the absorbed dose rate (nGy h-1) and a, b and c are the dose rates per unit activity 

concentrations of 226Ra, 232Th and 40K [nGy h-1(Bq kg-1)-1], respectively. The values of a, b 

and c were taken to be 0.92, 1.1 and 0.08. 

The external, annual effective dose can be estimated using the following formula (Eq.11.). 

 

10  (Eq.11.) 

 

where De is the calculated annual effective dose rate (mSv y-1), O is the annual indoor 

occupancy time (0.8×24 h×365.25 d=7012.8 h y-1) and F is the dose conversion factor, 

0.7 Sv Gy-1 (EC 1999).  

To calculate the excess of building materials to the external dose received outdoors one can 

subtract the assumed 50 nGy h-1 background radiation (EC 1999) from result provided by 

Eq.10. and Eq.11. 
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4.1.4. Grain size distribution determination by wet sieving and 

laser grain size analysis 

The grain size distribution and the resulting specific surface area of any material is 

considered to be related to its radon and thoron emanation and exhalation fractions as 

described in Chapter 2.3.1.1. However, it was not clear whether it has an influence on 

terrestrial radionuclide contents, influences radon and thoron emanations differently and 

whether it varies among the studied areas. Therefore, grain size distributions and specific 

surface areas of the adobe building material samples were determined by wet sieving and 

laser grain size analysis carried out at the Lithosphere Fluid Research Lab, Eötvös University 

and the Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences. 

4.1.4.1. Wet sieving  

After soaking 200-500 g of each of the samples in distilled water for at least two days, the 

author carried out the wet sieving by Fritsch sieves with diameters of 2, 1, 0.5, 0.25, 0.125 

mm and 63 μm or only with diameters of 2 mm and 63 μm9 coupled with Fritsch Analysette3 

sieve shaker. The sieves with the separated grain size fractions were dried on lab air for 

making possible to remove the individual grains to sheets by a brush. The mass of each grain 

size fraction (0.063-0.125, 0.125-0.25 0.25-0.5, 0.5-1, 1-2 and > 2 mm) then was measured by 

an electronic balance from the Sartorius Basic series with a readability of ≥ 0.01 g. By this 

method mass% data is provided for each grain size fraction. 

4.1.4.2. Laser grain size analysis  

The finest grain size fraction of wet sieving (< 63 μm) dispersed in distilled water was 

collected into plastic vessels. After sampling these homogenized liquids to glass holders and 

adding some detergent, the grain size distributions were measured by two different models of 

Fritsch Analysette 22 laser grain size analyzer (different grain size resolutions).10 These 

instruments measure the angular variation in intensity of light scattered as a laser beam passes 

through a dispersed particulate sample. Large particles scatter light at small angles relative to 

                                                 
9During the lab work, it became obvious that there are almost no grains staying on some sieves. Therefore, 

the number of applied sieves has been reduced. 
10The instrument at Lithosphere Fluid Research Lab stopped functioning after 19 adobe samples. Therefore, 

the other 27 adobe samples were analyzed at the Research Centre for Astronomy and Earth Sciences, Hungarian 
Academy of Sciences. 
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the laser beam and small particles scatter light at large angles. By this method volume% data 

of a range of grain sizes or a middle grain size (< 63 μm) is provided. 

4.1.4.3. Data evaluation methods 

The inorganic raw material contents of adobes were classified to assess their physical 

characteristics based on the USDA (United States Department of Agriculture) system, which 

uses twelve classes of clay, silt, sand and their intermediate types, for example loam. The 

classification was carried out by loading the proportions of clay, silt and sand fractions to the 

Soil Texture Utility (Wunsch 2009), which is an excel sheet showing automatically the results 

in the USDA soil texture triangle. The clay size range was taken to be < 2 μm, the silt to be 2-

50 μm and the sand to be 0.05-2 mm. These cover all the results of wet sieving and laser grain 

size analysis. Due to the different mass% data from wet sieving and the volume% data from 

laser grain size analysis, special care has to be taken while coupling the result. Further useful 

information about the samples is provided by the positions and amplitudes of characteristic 

peaks in the clay and silt fractions (data from laser gain size analysis). 

The specific surface area of each studied adobe building material was estimated in m2 g-1 

units by assuming that they contain only perfectly spherical grains with densities of SiO2 

(2.65 g cm-3). The surface area and the volume of a spherical particle can be calculated from 

its given diameter. Then, using the density, the mass of the same particle is estimated. From 

these data and the mass% and volume% results, the surface area of each grain size fraction 

can be estimated which weighted sum provides the specific surface area of the sample 

(Hellevang, personal communication, 2013). 

Possible errors and uncertainties 

The high clay and silt content of adobe building materials frequently cause plugging in the 

process of wet sieving, which might lead to some material loss. However, this loss is not 

relevant compared to that of the process of removing the grains from sieves. This is resulted 

in an opposite relationship between the systematic error of mass% data and the total mass of 

the soaked and analyzed sample. Statistical uncertainty occurs due to the readability of the 

electronic balance. In case of laser grain size analysis, systematic error might be present in the 

volume% data because of the not sufficient enough grain separation by the detergent. The 

instruments do not display statistical uncertainty values. Further details about uncertainties of 

this method can be found in Di Stefano et al. (2010). Additional uncertainty of the estimated 
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specific surface area results is due to the possible deviations in particle shapes and densities, 

as well as due to the not considered surface roughness. 

4.2. Methods of in-situ measurements in dwellings 

4.2.1. In-situ measurement strategy 

For the success of in-situ measurement campaigns, the help of local people to find 

appropriate houses and owners volunteering to participate was again indispensable. The 

selection criterion was that the room had to have at least one adobe wall, and preferably be in 

daily use or at least offer the possibility to sleep, live or work in. At the end, the in-situ 

measurements, consisting of indoor radon and thoron activity concentration and γ dose rate 

measurements, were performed in 53 adobe dwellings of the seven selected settlements at 

Békés County (Fig.3.). Since Sarkad and Sarkadkeresztúr are considered together11, five to 

eleven buildings were studied at each location: eleven at Gyomaendrőd, Sarkad-

Sarkadkeresztúr and Vésztő, ten at Gyula and five at Kondoros and Újiráz. It was not possible 

to measure at all locations during the whole measurement period of one year. In some cases, 

the owners refused continuing the measurement campaigns or some detector loss or damage 

occurred.  

The indoor radon and thoron activity concentrations measurements were carried out in 

three months periods for one year in order to represent the four seasons typical of the climate 

(OMSZ, http://www.met.hu/eghajlat/magyarorszag_eghajlata/): winter from December 2010 

to February 2011, spring from March 2011 to May 2011, summer from June 2011 to August 

2011 and autumn from September 2011 to November 2011. The γ dose rate measurements 

were performed in each dwelling when the first radon and thoron activity concentration 

measurements started. 

Representativeness 

The total number (five to eleven) of measurements at each settlement is considered to 

represent the adobe dwellings of that given settlement. The number of all studied dwellings 

(53) represents the adobe dwellings of the given studied area, Békés County. 

                                                 
11Due to the proximity, similar geological setting and the low number of studied buildings at 

Sarkadkeresztúr. 
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4.2.2. Indoor radon and thoron activity concentration 

determination by etched track detectors 

Raduet type etched track detector pairs, provided by Radosys Ltd. (Budapest, Hungary) 

were used for the indoor radon and thoron activity concentration measurements. One of the 

detectors is for radon detection and the other one is for radon and thoron detection together 

using more permeable filter. The thoron activity concentration, therefore, can be derived 

based on the track density difference of the two detectors. The detector pairs were placed at a 

10±1.5 cm distance from the adobe walls. This distance was chosen to match earlier studies 

(Chougaonkar et al. 2004, Deka et al. 2003, Luo et al. 2005) so that comparison of the results 

can be made. However, some recent studies, e.g. by Stojanovska et al. (2013), placed the 

detectors at a distance of at least 50 cm. Note that these measurements are always expected to 

show lower thoron activity concentrations than at 10 cm distance because of the 

inhomogeneous distribution of thoron in the room (Urosevic et al. 2008). For the same reason, 

special care was taken to avoid double or multiple sided effects at wall edges and corners, as 

well as any influence of electronic devices 

Special care was taken to avoid double or multiple sided effects at wall edges and corners, 

as well as any influence of electronic devices (Hámori et al. 2006). Detectors were placed at a 

height between 60 and 240 cm from the ground, while adjusting to the conditions provided by 

the residents.  

For the analysis of detectors, the chemical etching of inner plastic films was performed in 

the laboratory of the National Research Institute for Radiobiology and Radiohygiene 

(OSSKI), Budapest, Hungary with 6.25 M NaOH solution at 90 0C for 5 hours. The counting 

of α-tracks was carried out by Radosys automatic microscopes in the lab of OSSKI and partly 

in the lab of the manufacturer, and always at least three parallel counting were run for each 

plastic film. Radon and thoron activity concentrations for the three months integration times 

were calculated from the track density of detector pairs, the background track density and the 

calibration factors provided by the manufacturer. Annual averages were only determined 

when measurement data were available in all seasons in the given building. 

Possible errors and uncertainties 

The standard deviation of the three times counted track densities and the uncertainty of 

calibration factors, provided by the manufacturer, were taken into account in the statistical 

uncertainty calculations. The uncertainty for thoron activity concentration is about the double 

of that of radon due to the calculation based on two measurements. Systematic error in the 
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detector analysis process might occur due to the possibilities of not appropriate etching or 

automatic microscope settings.  

 

Knowing the lower limits of detection (LLDs) is a critical point of these measurements, 

mainly in case of thoron. The measurement of this isotope is quite uncertain and low values 

cannot be detected appropriately due to the subtraction of two separately measured track 

densities. LLD calculation in this method is complicated because it has to provide a unique 

value for each radon and thoron activity concentration pair, since radon LLD depends on the 

thoron activity concentration and thoron LLD depends, in turn, on the radon activity 

concentration. For details about LLD calculation procedures, the reader is referred to the 

publication of Stojanovska et al. (2013) or suggested to contact Radosys Ltd. (Budapest, 

Hungary) for their manuals (Kocsy 2012). As Stojanovska et al. (2013) admitted to provide 

only a “simplistic approach to estimate the LLD of thoron for the two-detector configuration” 

the author only accepted to be correct the LLDs calculated based on the way offered by the 

manufacturer (Kocsy 2012). The author, however, emphasizes the need of the representation 

of low values in the statistics. As suggested by the Analytical Methods Committee (AMC 

2001) and Reimann et al. (2008) the best way to do this is to use all measurement data if 

available, instead of many existing, however, not ideal solutions (for example, changing to 

arbitrarily chosen low numbers, e.g., half of the LLDs). For this reason, all measurement data 

were used in the statistical evaluation even though a part of them were below their LLDs. 

However, even if LLDs are not involved in the statistical analysis, they are recognized and 

considered in that data evaluation. 

4.2.2.1. Inhalation dose estimation from indoor radon and thoron 

activity concentration data 

The term of inhalation dose, a type of internal exposure, refers to the effective dose 

originated from radon, thoron and usually considers mostly the inhalation of their solid decay 

products, which is mostly affecting the tissues of the lung. It can be directly related to the 

level of health impact of radon and thoron, however, note the possible much higher local 

tissue dose (Madas and Balásházy 2011). In this study, the inhalation dose can be estimated 

from the measured annual average radon and thoron activity concentration data using Eq.12. 

 

10  (Eq.12.) 
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where Di is the estimated annual inhalation dose from radon or thoron (mSv y-1), Cav is the 

annual average radon or thoron activity concentration (Bq m-3), Feq is the radon or thoron 

equilibrium factor (see further details about applied values below) and Fc is the dose 

conversion factor with a value of 9 nSv (Bq h m-3)-1 for radon and 40 nSv (Bq h m-3)-1 for 

thoron (Chapter 2.3.3, UNSCEAR 2000). It is noted that O is the annual indoor occupancy 

time (7012.8 h y-1). 

As described in Chapter 2.3.2. the typical value of the radon equilibrium factor is 0.4 

(UNSCEAR 2000), which was applied in the dose estimation calculations (Eq.12.). In case of 

thoron isotope, the 0.04 average equilibrium factor (Harley et al. 2010) was available to use. 

Note the resulted uncertainty. Omori et al. (2013) pointed out that without direct 

determination of thoron decay product activity concentrations and equilibrium factors, any 

average discrete value has about a 100-200 % uncertainty. However, in this study, most of the 

many efforts of the author failed to provide information about the actual equilibrium factors. 

Only six measurement data were available from the spring period which show a similar 

average as Harley et al. (2010), hence verifying its application for a crude estimation. 

4.2.3. Equivalent γ dose rate determination by a portable device 

To monitor the actual γ dose rate and to gain further information about possible building 

material excess external dose in adobe dwellings, some measurements were carried out by 

FH 40 G-L10 meter (Thermo Scientific 2007) at the beginning of the radon and thoron 

activity concentration measurement campaigns (winter). This instrument has a proportional 

detector built in, which detects the 30 keV - 4.4 MeV energy γ-photons originated from 

cosmic background radiation and most importantly from the terrestrial radionuclide 

concentration of the soil and the building materials. The latter source is considered to cause 

any detected spatial variation on the studied area of Békés County. The device is designed to 

meet the energy response behavior of the SI-units ambient dose equivalent and ambient dose 

equivalent rate according to the Report 39 of the International Commission on Radiation 

Units and Measurements (ICRU, 1985). An intelligent rate meter algorithm detects and 

indicates small changes in dose rate, suppressing random noise. The values can be read 

directly from the instrument LCD in the units of nSv h-1. Three dose rate values with about 

one minute time shifts were reported with the device pushed to adobe wall surfaces, lying on 

ground surfaces and also being hold at one meter height in the middle of the chosen rooms.
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Possible errors and uncertainties 

The statistical uncertainty of detected γ dose rate results was controlled by the three 

successive measurements. However, the integration time of the device is not found its manual, 

hence the possibility of any overlap cannot be neglected, however reduced by one minute 

waiting time before each read. 

4.3. Applied statistical methods 

For all data processing purposes, the Microsoft Excel, Statgraphics Centurion and Microcal 

Origin softwares were used. As the basis of the statistical analysis of all measurement results 

robust statistics were applied and Tukey’s resistant five-letter summary statistics 

(Tukey 1977) containing the minimum, lower quartile, median, upper quartile and the 

maximum were calculated, presented in tables and visualized by box-whisker plots. 

Probability (frequency) histogram, average and its 1σ standard deviation are also presented in 

some cases. Standardized skewness and standardized kurtosis values are considered for the 

evaluation of statistical distributions. Relative variabilities are presented by the robust Median 

Absolute Deviation/median (MAD/median) measure. 

For the detailed analysis of the measurement results the following three 

methods/hypothesis tests, for three different aims were chosen and carried out. All the test 

were considered at the 95 % confidence level (α), which means that the test accepts (cannot 

reject) the null hypothesis when the P-value ≥ 0.05 and that the test rejects the null hypothesis 

when the P-value < 0.05. None of the resulted P-values are given among the results because 

of the predefined decision threshold. 

4.3.1. Mann-Whitney (Wilcoxon) test for equality of medians 

To be able to show significant differences between central tendencies of sample groups 

(like data from different studied areas, geological environments or periods), the Mann-

Whitney (Wilcoxon) non-parametric test, hereafter MW test, based on the comparison of pairs 

of medians was applied (Mann and Whitney 1947). The null hypothesis is that two 

populations are the same (P-value ≥ 0.05). This statistical test points out if a sample group 

significantly tends to have lower or higher values than any other group (P-value < 0.05). It 

does not assume that the data is normally distributed, which is not expected from some of the 

data (see below), and it turned out to have satisfying sensitivity for the collected number of 

samples and data.  
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4.3.2. Shapiro-Wilk test for statistical distributions of indoor 

radon and thoron activity concentrations 

Significant deviation from lognormal distribution of indoor radon data was described by 

Bossew (2010) and Tóth et al. (2006) only when non homogeneous regions with uniform 

geology, building style and living habits were sampled. Based on this finding, it is useful to 

test the lognormal distribution assumption of these data, i.e. normal distribution assumption 

of the natural logarithm of the data, to find possible deviations referring to sampling 

heterogeneity. The data was also tested for normality as it is a condition of most parametric 

tests and it is mentioned as the alternative distribution (Tóth et al. 2006). By the help of 

determined distributions the proportion of dwellings above reference levels can also be 

predicted. For these aims the powerful Shapiro-Wilk test, hereafter SW test, was applied 

(Shapiro and Wilk 1965) as in the studies of Kovacs (2010) and Vaupotic and Kávási (2010). 

The null hypothesis is that the data come from a normal distribution or lognormal when 

natural logarithm is taken (P-value ≥ 0.05) against the alternative hypothesis that it is not 

(P-value < 0.05). 

4.3.3. Correlation analysis 

Statistically significant non-zero relationships among any meaningful pairs of 

independently measured parameters were studied by the help of Pearson’s linear correlation 

coefficient (r). This is a measure of the dependence between two variables giving a value 

between +1 and -1. Its statistical significance can be given by rejecting the null hypothesis (P-

value < 0.05) that the true correlation coefficient (ρ) is equal to 0, based on the value of the 

sample correlation coefficient (r). The lowest r accepted to be statistically significant is 

decreasing by the increase of sample number.  
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5. METHODOLOGY ACHIEVEMENTS IN RADON AND 

THORON EMANATION DETERMINATION 

5.1. Radon: testing the equilibrium method by a comparison to the 

growth curve method 

An appropriate radon emanation measurement method (growth curve method, 

measurement duration by RAD7 is in the 10 days of order of magnitude), which takes into 

account the radon leakage (Chapter 4.1.2.3.1.) is already available. However, it is a time 

consuming technique for large number of samples. One of the specific aims of this work is to 

test an already existing, less time consuming method (equilibrium method, measurement time 

by RAD7 is in the some hours of order of magnitude, Chapter 4.1.2.3.2.) for further 

consideration to use (PV6. and partially in 7.). 

5.1.1. Experimental – materials and measurement strategies 

For the comparison of the equilibrium method (Chapter 4.1.2.3.2.) to the growth curve 

method (Chapter 4.1.2.3.1.), 27 adobe building material samples were analyzed using both 

measurement strategies and calculations. These samples were in the form of routine 

measurement samples, i.e. cut to about 200 g cubic bodies with widths of about 5 cm. After 

placing and sealing a sample into the sample container (Fig.7.), the radon activity 

concentration growth curve measurement was started and continued for 10 days. The sample 

container was then disconnected from the experimental setup and kept closed for about 19 

days to make sure that the secular equilibrium was reached. Then the sample container was 

again connected to the experimental setup (i.e. same plastic tubes and RAD7 device) and the 

assumed equilibrium radon activity concentration was measured for about four hours. 

5.1.2. Results and discussion – comparison of the radon 

emanation results of the two methods 

The radon activity concentration measurement results from the two methods (growth curve 

method and equilibrium method) were evaluated as described in Chapter 4.1.2.3. with the 

application of Eq.3., 4. and of Eq.5.  

On Fig.8. the radon emanation results of these calculations from the two applied methods 

are plotted vs. each other. Since the less time consuming equilibrium method (only four hours 
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measurement time by the RAD7 device) does not allow considering the leakage, which 

produce radon loss from the experimental setup (Fig.7.), it is obvious why it shows less radon 

emanation results than the growth curve method (Fig.8., PV6.). It is also a remarkable 

observation that the determined statistical uncertainty is always higher in the growth curve 

method than in the equilibrium method (Fig.8.). However, the growth curve method results 

are not affected by the systematic error of possible radon leakage since it takes it into account 

by the value of α (Eq.3., 4., Chapter 4.1.2.3.1.). 

 

Fig.8.: The radon emanation results of 27 adobe samples given by equilibrium method vs. 

growth curve method. Line 1:1 presents the perfect fitting of results. The data below this line 

show that equilibrium method measures lower values than growth curve method (PV6.). 

Plotting the ratio of results of equilibrium and growth curve methods, which is 1 (unit) in 

the ideal case, vs. α (defined in Eq.2.) of each experimental setup with a given sample holder, 

plastic tubes and RAD7 device, it was observed that neither of the growth curve nor the 

equilibrium radon emanation measurement methods can provide reliable results when the 

leakage is prevailing. Therefore, the data points with α higher than 0.02 h-1 were ignored 

together with those, in which one of the emanation results of the two methods, in the 

calculation of the ratio, had elevated statistical uncertainty (PV6.). Overall, the ratio vs. α 

results of 20 adobe building material samples are considered and presented on Fig.9.  
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Fig.9.: The ratio of emanation results of equilibrium and growth curve methods vs. the value 

of α representing the radon leakage of each experimental setup. The red line shows the 

observed connection between the plotted values. The green lines represent the 95 % 

confidence intervals. The black lines and blue numbers mark the acceptable level of radon 

leakage for the usage of equilibrium method (see more explanation in the text above and 

PV6.). 

The ratio of results of equilibrium and growth curve methods is observed to show an 

inverse linear connection with α of each measurement set up and approaches 1 (unit) when α 

is around 0 (zero) (Fig.9., red line with green 95 % confidence intervals, fixed intercept: 1). In 

this case the radon emanation results of different methods are the same. This indicates that the 

less time consuming equilibrium method also can provide a good estimation of radon 

emanation below a certain, controlled degree of radon loss (PV6.) 

It is important to determine the maximum level of acceptable radon leakage, below which 

the results of the two methods do not show any significant difference. The relative statistical 

uncertainty of the ratio of results of equilibrium and growth curve methods is considered, 

which has an average value of 16 %. Hence, if the ratio is reduced by 16 %12 due to the not 

considered leakage in the equilibrium method, its error bar still reaches the value of 1 (unit). 

In this case, the difference between the radon emanation results is not significant. This 16 % 

                                                 
12The radon emanation result of the equilibrium method is 16% lower than that of the growth curve method. 
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reduction is presented on Fig.9. by the ratio value of 0.8413 which signs out a 0.0025-0.003 h-1 

maximum acceptable α of the experimental setup for the usage of the less time consuming 

equilibrium method (Fig.9.). This value is equal to 0.25-0.3 % h-1, which means that 

0.25-0.3 % of the actually accumulated radon atoms are leaving the experimental setup in one 

hour. This is about the 30-40 % of the value of radon decay constant for a comparison of the 

value of 2 % in SJ5. If the radon leakage is proven to vary only below this level the 

equilibrium method provides correct, comparable radon emanation results. If the leakage is 

higher, but can be kept below an α value of for example 0.009 h-1 (0.9 % h-1), the results are 

only an order of magnitude estimation for the possible aim of finding hazardous samples for a 

more detailed study.  

5.1.3. Conclusions and further applications 

The measurement results above allow getting known the limits of the two radon emanation 

determination methods and sign out the degree of needed leakage control of the experimental 

setup (PV6., 7.). For the usage of the less time consuming equilibrium method (for large 

number of samples), a proven maximum 0.0025-0.003 h-1 α is acceptable, otherwise it most 

probably provides only an order of magnitude estimation of radon emanation. This acceptable 

α value is one order of magnitude higher (0.02 h-1) for the growth curve method. 

Since the results show that the available experimental setup tends to have varying and 

more significant radon leakage than 0.0025-0.003 h-1, the growth curve method was applied, 

and only its results are considered in the evaluation of adobe building materials of this study. 

The radon emanations were remeasured by this method if α was determined to be above 

0.02 h-1 in the first measurement. 

For future consideration, note that the author and her coauthors have already designed, 

tested and used a radon leakage free High Density Polyethilene (HDPE) sample container for 

γ-ray spectrometry measurements (SJ5.). This design is suggested to improve for less time 

consuming radon emanation measurement purposes with the equilibrium method. 

Possible errors and uncertainties 

In the accepted radon emanation measurement results the statistical uncertainty is 

originated from the radon activity concentration determination uncertainty of RAD7, the 

uncertainty of the determined Cmax and α in the Eq.3. fit to the measurement results and the 

uncertainty of experimental setup volumes. No systematic error is expected from any sources.

                                                 
13I.e. 1 0.16 0.84 
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5.2. Thoron: improving the data analysis method taking into 

account the sample geometry and the thoron attenuation in the 

sample holder 

There was not an appropriate thoron emanation measurement/determination method 

available in the literature for the given experimental setup (Fig.7.). A new data analysis 

method was required with the regular measurement strategy (Chapter 4.1.2.3.2.). Making this 

available (SJ4.) got to be another specific aim of this work. 

For the aim of efficiently analyze the thoron emanation of adobe building materials, the 

author considers first a cylindrical sample geometry both via measurements and model 

calculation (SJ4.) and then a cubical sample geometry via an improved model calculation 

(Csige, personal communication, 2013). Like this, an appropriate thoron emanation estimation 

method gets available for easily prepared cubical samples based on thoron activity 

concentration measurements in the available experimental setup (RAD7, Fig.7.) only with a 

single sample width. The need is proven by several similarly improved methods, which were 

discussed by Cozmuta and van der Graaf (2001), Tan and Xiao (2013) and Ujić et al. (2008). 

However, these methods use RAD7 detector for soil surface thoron exhalation determination 

or different measurement devices for sample thoron diffusion coefficient and emanation 

determination.  

Note that the thoron emanation, due to the significant geometry sensitivity, is more 

meaningful to model as the thoron activity leaving a unit sample volume, which is named as 

the thoron generation rate (Bq m-3 s-1). Therefore, this value is applied in this subsection. 

However, in the application of the new analysis method and in the presentation of the results, 

it is better to calculate to the thoron emanation on the following way (Eq.13.). 

 

   (Eq.13.) 

 

where G is the thoron generation rate (Bq m-3 s-1) determined by the method built up below 

and ρ is the density of the sample (kg m-3). 
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5.2.1. Cylindrical sample geometry 

When a cylindrical sample is placed into the cylindrical sample holder, theoretically it has 

only one surface, on which thoron can be exhaled. In this case, the thoron activity 

concentration in the pore space of the sample depends only on one coordinate, which is the 

elevation. This fact reduces the complexity of the system, therefore, it can be understood 

better. An experiment was carried out detailed below and then a described model was fitted to 

its results for the determination of different sample parameters. This part of the work was 

published in SJ4. 

5.2.1.1. Experimental – material and measurement strategy 

A representative adobe building material sample from Gyomaendrőd, Békés County was 

selected which has a comparably hard, stable structure to cut and rasp to the cylindrical shape 

of the sample holder. The sample thickness was reduced in 19 different steps, from 8.35 cm to 

0.85 cm. The free volume between the uneven surface of the sample side and the inner part of 

the sample holder was filled up with the powder of the same sample. The contribution of the 

powder to the mass was always between only 4 and 7 %. Due to this careful sample 

preparation process, the thoron could only escape through the top surfaces of the different 

thicknesses of the sample. The 19 thoron activity concentration measurements were carried 

out by RAD7 detector (Fig.7.) with 15 minutes measurement cycles, each measurement for at 

least four hours. 

5.2.1.2. Measurement results – measured thoron activity 

concentrations vs. sample thicknesses 

Experimental results show a non-linear dependence of measured thoron activity 

concentration on the sample thickness. Although the thoron activity concentration, first, is 

increasing linearly with the sample thickness (i.e. the sample amount until it is still 

significantly thinner than the diffusion length of thoron in the sample) for thicker samples the 

measurable thoron activity concentrations are decreased (below the linear trend) and the curve 

breaks forming a plateau (SJ4.). The measured values are presented on Fig.11. below in the 

Chapter 5.2.1.4. together with the fit of the appropriate model described here. 
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5.2.1.3. Model for cylindrical samples 

In this subsection the RAD7 displayed (measurable) thoron activity concentrations are 

described by model calculations as a function of cylindrical sample thickness (SJ4.). Beside 

the geometry of the sample, the model also considers the thoron decay in RAD7 and the 

resulted thoron activity concentration attenuation in the Vnet volume of the sample container 

(Fig.7.) (Chapter 4.1.2.2.2.).  

An important factor to consider in this model is the diffusion of thoron along the z 

coordinate in the sample, which can be described by Eq.14.  

 

   (Eq.14.) 

 

where C(z) is the actual thoron activity concentration (Bq m-3) depending on the elevation in 

the sample, D is the thoron diffusion coefficient in the sample (m2 s-1) and β is the partition 

corrected porosity of the sample expressed as 1  taking into account the 

water saturation (m), the partition coefficient of thoron between water and air phase (L) and 

the porosity (ε) (Andersen 2001). The definitions of G and λ14 are given earlier in the text; 

they are the thoron generation rate and the decay constant of thoron, respectively. 

Zero flux boundary condition on the bottom of the sample container has to be applied 

⁄ | 0  and the one on the top surface of the sample has to state that the thoron 

activity concentration in the sample pore volume equals to that in Vnet ( . 

Perfect mixing is assumed in Vnet and also, due to the decay of thoron, that the value of thoron 

activity concentration drops to its half in the RAD7 radon-thoron detector with the given 

calibrated induced air flow rate of q = 11 cm3 s-1 (Fig.7., Durridge Co. 2013). This last 

process is causing the attenuation in Vnet. The rate of change of thoron activity concentration 

in Vnet hence can be described by the following differential equations (Eq.15.) consisting the 

terms of (1) thoron leaving the sample to Vnet, (2) thoron decay, (3) thoron leaving Vnet 

towards RAD7 and (4) thoron arriving back to Vnet from RAD7. This reduces to an algebraic 

equation under steady state conditions.  

                                                 
14The author notes that using the λ of radon, the model (Eq.16.) describes a linear dependence for this 

isotope. Therefore, it proves that all radon atoms can leave the sample in the given experimental setup. 
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0   (Eq.15.) 

 

where Cmeas(t) is the measurable thoron activity concentration (Bq m-3) depending on the time 

elapsed since the sealing of the sample container, j is the diffusion flux of thoron on the top 

surface of the sample (Bq m-2 s-1) expressed as     ⁄ |  and H and h are 

defined in Chapter 4.1.2.1. (Fig.7., the height of the sample holder and the sample thickness, 

respectively). 

Solving the equation system described above provides the final form15 of the model (SJ4.), 

which is expressed here as the RAD7 displayed thoron activity concentration function of the 

sample thickness (Eq.16.). 

 

/    (Eq.16.) 

 

where Cmeas(h) is the measurable thoron activity concentration (Bq m-3) depending the sample 

thickness and γ is a sample parameter, which is reciprocating zd, the diffusion length of thoron 

in the sample (m) and it is expressed as /  (m-1). 

The final form of the model (Eq.16.) also describes a non-linear dependence of thoron 

activity concentration on the sample thickness similar to the experimental results. Some 

calculation scenarios with different sample parameters (G, β, γ) are presented on Fig.10. It is 

observed that Cmeas and the curve shape highly depend on the values of G and γ. However, 

constraining the value of β in a meaningful range (0 < Lε < β < ε < 1) has an insignificant 

effect on the gained curves. 

                                                 
15The model was modified several times with the help of the measurement results. 
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Fig.10.: Model (Eq.16.) predicted non-linear RAD7 displayed thoron activity concentrations 

vs. the thickness of the cylindrical sample in the experimental setup (Fig.7.). The maximum 

value of h is set to be H (0.095 m). The figure also presents the high curve shape sensitivity to 

thoron generation rate (G = 10 or 100 Bq m-3 s-1) and γ parameter (γ = 50 or 100 m-1) and the 

low sensitivity to partition corrected porosity (0 < β ≤ 1). 

5.2.1.4. Discussion – the fit of model to the measurement results 

Fitting the model (Eq.16.) to the measurement results (Chapter 5.2.1.2.) aims to determine 

the thoron generation rate of the sample and also provides a value for γ sample parameter. 

Determined value of γ can also be accepted as a good estimate for other samples (SJ4.) and, 

therefore, a general thoron diffusion coefficient in adobe building material can be estimated. 

To fit the model (Fig.11., red line) to the measurement results (Fig.11., black quadrates), 

Microcal Origin software was used. The A, H and q of the experimental setup and the λ of 

thoron are obviously fix parameters with the given values on Fig.11. Considering β as a free 

fitting sample parameter resulted in meaningless results, which is not surprising due to the 

low curve sensitivity to its value (Fig.10.). Hence, fix partition corrected porosity has to be 

applied either from estimating its value or by obtaining it from independent measurements of 

sample porosity and water saturation. In the case of adobe building material samples its value 

is estimated to be 0.56±0.10 based on the estimated values m = 0.1±0.05, L = 0.25±0.1 and 
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ε = 0.6±0.1 and the definition of partition corrected porosity (Andersen 2001). Fig.11. 

presents the measurement results of the experiment and the fit of model by using β = 0.56. 

 

Fig.11.: The measured thoron activity concentrations (black quadrates) as a function of the 

sample thickness in the experiment (Chapter 5.2.1.2.) and the best fit of the model (Eq.16., red 

line) (SJ4.). The fixed parameters and the results of the fit, indicated by bold numbers, are 

presented in the right bottom corner. Note that the Y axis starts at 300 Bq m-3. 

The developed final model (Eq.16.) describes very well the experimental results and its fit 

provides the value (Fig.11.) of thoron generation rate of the selected sample from 

Gyomaendrőd (Békés County) and most importantly16 γ parameter as an estimate for all adobe 

building material samples in this study. The uncertainties of G and γ on Fig.11. are the 

uncertainties of the non-linear curve fit. Repeating the fit in the range of estimated partition 

corrected porosity (β = 0.56±0.10) the results are given as G = 142±6 Bq m-3 s-1 and 

γ = 73±5 m-1 (SJ4.). Using this value of γ parameter, the thoron diffusion length is found to be 

zd = 1.4±0.2 cm. For the analysis of other adobe samples (Chapter 5.2.2.), D is determined in 

the range of 1 to 3×10-6 m2 s-1 ( γ⁄  and e  where Da ≈ 1.1×10-5 

m2 s-1 is the diffusion coefficient of thoron in air, SJ4., Rogers and Nielson 1991). As a 

comparison, the radon bulk diffusion coefficient for a concrete sample was determined 

4.6±0.4×10-10 m2 s-1 (Cozmuta and van der Graaf 2001), which is four orders of magnitude 

                                                 
16Because it can be used in the simpler analysis method of the 45 other adobe samples.  
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lower than that for thoron in adobe building material determined in this study. This is 

considered to be a proof of high radon and also thoron exhalation potential of Hungarian 

adobe building materials and consequently indoor accumulation. 

5.2.2. Cubical sample geometry – further application 

When the partition corrected porosity of the sample and its thoron diffusion coefficient are 

known, thoron generation rate and consequently thoron emanation can be obtained from a 

single thoron activity concentration measurement with one given sample height. For this, the 

optimum sample thickness would be at around 5 cm (SJ4.). Not only measuring with many 

sample thicknesses requires a long laboratory work for only one sample, but also to form 

these well sample container fitting cylindrical shapes. The new analysis method is based on an 

improved version of the model described above. It is for a single thoron activity concentration 

data with easily formable cubical sample geometry.  

For the thoron generation rate analysis of the other 5 cm width cubical adobe samples in 

this study, the new analysis method was applied, which is contained in the following equation 

(Eq.17., provided by Csige, personal communication, 2013). 

 

/
   (Eq.17.) 

 

where a and b are constants with one specific cubical model provided values of -7.0±2.4×10-7 

m3 s-1 and 10±1.7×10-5 m3, respectively. Their values depend on the partition corrected 

porosity, the thoron diffusion coefficient in the sample and the width of the cubical sample. 

The used a and b values were determined for adobe samples by the most probable mean 

values of β = 0.56, D = 2×10-6 m2 s-1 and d = 5 cm. Note that AH-d3 is Vnet and that q is the 

calibrated induced air flow rate of RAD7 radon-thoron detector. The thoron emanation, E, is 

then calculated from G based on Eq.13. 

Possible errors and uncertainties 

The uncertainty of thoron emanation results in this study is mostly due to the uncertainty of 

b constant. Its uncertainty was determined for β = 0.46 to 0.66 estimated range, D = 1 to 

3×10-6 m2 s-1 determined range and a certain d value of 5 cm. The sample size deviations, the 

measured thoron activity concentration uncertainty and the determined sample density 

uncertainty would further increase the overall uncertainties; however, these are not taken into 

account in the analysis process. Systematic errors might occur due to β and D estimates.
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6. STATISTICS OF MEASUREMENT RESULTS OF ADOBE 

BUILDING MATERIAL AND DWELLINGS 

In the presentation of the measurement results different meaningful data groups are 

statistically analyzed and compared. The analyzed data groups form a complicated system 

based on the studied parameter, time and location-geological information. Therefore, a 

notation system is defined here answering the what-when-where questions and helping to 

follow this part of the manuscript. 

The Tab.1. defines the first part of the notation showing which measured parameter is 

considered in the given statistics (what, parameter code). Each of these is analyzed in 

separate subchapter. 

 

what studied parameter 

RnE radon emanation 

TnE thoron emanation 

Ra 226Ra activity concentration 

Th 232Th activity concentration 

K 40K activity concentration 

EDRaThK estimated annual external effective dose 

fRnE radon emanation fraction 

fTnE thoron emanation fraction 

SSA estimated specific surface area 

RnC indoor radon activity concentration 

TnC indoor thoron activity concentration 

IDRn estimated annual radon inhalation dose 

γDR measured γ dose rate 

Tab.1.: The possibilities for the first part of the notation describing the studied parameter 

(what). The dashed line marks the border of statistically analyzed parameters: measured in 

laboratory (above) or in-situ (below). 

The following table (Tab.2.) defines the second part of the notation providing information 

about the considered grouping interval length (when, interval length code). C (constant, 

Tab.2.) is given in the second part of the notation in case of parameters of adobe building 

material samples measured in laboratory (above dashed line in Tab.1., except EDRaThK) not 

changing in time. In case of any estimated or measured effective doses (EDRaThK, IDRn and 

γDR, Tab.1.) the notation of Y (one year, Tab.2.) can only be paired because the end result is 

always an annual effective dose. In case of in-situ measured indoor radon and thoron activity 

concentrations (RnC and TnC, Tab.1.) the Y and S (one year and one season, Tab.2.) are both 

possible referring to datasets of annual average or seasonal values. When more possible 
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values are given for one notation (e.g. S, Tab.2. and also valid for Tab.3.), all of them are 

considered separately in the statistical analysis and compared to each other. 

 

when grouping interval length possible values 

C constant constant 

Y one year one year 

S one season winter, spring, summer, autumn 

Tab.2.: The possibilities for the second part of the notation describing the grouping interval 

length and giving its possible values (when).  

The third part of the notation defined in Tab.3. provides information about the considered 

grouping location size or geological information (where, location size or geological 

information code). The results are discussed in separate paragraphs going from G to H or 

from H to KH, in case of laboratory and in-situ measurements, respectively. In case of 

laboratory measurements, JH and KH grouping options are not considered because of the lack 

of clear geological grouping of settlements at E-Mecsek Mts. and Sajó and Hernád Rivers 

Valleys and also the low sample numbers. G option (Tab.3.) is not possible in case of in-situ 

measurements of this study because the measurements were limited to only one of the studied 

areas, Békés County. 

 

where grouping location size or geological information possible values 

G all studied areas all studied areas 

H one studied area 

 
Békés County 
E-Mecsek Mts. 

Sajó and Hernád Rivers Valleys 

JH geological type at Békés County 

 
clay 
loess 
turf 

KH geological age at Békés County 
 

Pleistocene 
Holocene 

Tab.3.: The possibilities for the third part of the notation describing the grouping location 

size or geological information and giving its possible values (where). 

6.1. Results of laboratory measurements on samples 

6.1.1. Radon and thoron emanations of samples 

In the closed chamber technique measurements the radon emanations (PV6.) are provided 

directly (Eq.3., 4.). However, in case of thoron the so-called thoron generation rates are 

gained first (Eq.17.) and the thoron emanation results are then calculated based on Eq.13. 
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(SJ4.). Altogether 92 radon and thoron emanation results are available for the 46 adobe 

building material samples. The relative uncertainties of the data were always estimated to be 

around 13 % and 20 % (consider the information provided in Chapter 5.2.2.), respectively, for 

radon and thoron emanations. Individual thoron emanation data should be handled carefully. 

However, statistics of sample groups presented below is useful and provide real information. 

The statistics for all radon and thoron emanation data (RnE-C-G and TnE-C-G) of samples 

originated from either of the studied areas are summarized in Tab.4. and visualized in Fig.12. 

The median values are 7.9 and 5.7 kg-1 s-1 for radon and thoron emanations, respectively.  

 

Emanation 

  Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

Radon 46 3.1 6.7 7.9 9.6 13.8 8.2 2.3 0.86 0.30 0.20 
Thoron 46 1.9 3.9 5.7 7.3 11.9 5.8 2.4 1.67 0.06 0.28 

Tab.4.: Count (sample number), minimum, lower quartile, median, upper quartile, maximum, 

average, st. deviation (kg-1 s-1), st. skewness, st. kurtosis and MAD/median for all radon and 

thoron emanation results (RnE-C-G and TnE-C-G). 

 

Fig.12.: Box-whisker plots and frequency histograms of all radon and thoron emanation 

results (RnE-C-G and TnE-C-G). 

The adobe sample statistics for the three studied areas separately (RnE-C-H and 

TnE-C-H) are summarized in Tab.5. and visualized in Fig.13. The radon emanation median 
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values are 7.6, 8.1 and 8.6 kg-1 s-1, whereas the thoron emanation medians are 5.7, 6.7 and 

4.5 kg-1 s-1 for Békés County, E-Mecsek Mts. and Sajó and Hernád Rivers Valleys (presented 

as S-H Rivers Valleys in all tables), respectively. MW tests did not show any statistically 

significant differences among the three studied areas neither regarding the radon nor the 

thoron emanation medians (Fig.13.). 

 

Emanation 

  
Count Min. 

L. 
quartile 

Median
U. 

quartile 
Max. Average

St. 
dev. 

St. 
skewness 

St. 
kurtosis 

MAD/Median

R
ad

on
 Békés County 18 3.1 6.5 7.6 8.6 10.1 7.4 1.9 -1.38 0.42 0.14 

E-Mecsek Mts. 18 5.6 7.1 8.1 10.0 13.1 8.7 2.3 0.78 -0.66 0.21 

S-H Rivers Valleys 10 4.7 6.2 8.6 9.6 13.8 8.7 2.7 0.50 0.05 0.20 

T
h

or
on

 Békés County 18 2.2 3.9 5.7 6.0 8.8 5.3 1.6 0.28 0.11 0.20 
E-Mecsek Mts. 18 2.5 4.8 6.7 7.6 10.8 6.5 2.5 0.36 -0.55 0.28 

S-H Rivers Valleys 10 1.9 3.8 4.5 7.4 11.9 5.7 3.1 1.14 0.12 0.47 

 Tab.5.: Count (sample number), minimum, lower quartile, median, upper quartile, maximum, 

average, st. deviation (kg-1 s-1), st. skewness, st. kurtosis and MAD/median for radon and 

thoron emanation results separately for the three studied areas (RnE-C-H and TnE-C-H). 

 

Fig.13.: Box-whisker plots of radon and thoron emanation results separately for the three 

studied areas (RnE-C-H and TnE-C-H).   
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6.1.2. 226Ra, 232Th and 40K activity concentrations of samples 

Based on the gamma-ray spectroscopy analysis of the 46 adobe building material samples 

altogether 138 226Ra, 232Th and 40K activity concentrations measurement data became 

available. This part of the work was partially published in SJ2. The relative uncertainties of 

the data were always around 13, 9 and 7 %, respectively for the three parameters. 

The statistics for all 226Ra, 232Th and 40K activity concentration data  

(Ra-C-G, Th-C-G and K-C-G) of samples originated from either of the studied areas are 

summarized in Tab.6. and visualized in Fig.14. It is seen the median values are 28, 32 and 

364 Bq kg-1 for 226Ra, 232Th and 40K, respectively. The linear correlation coefficient between 
226Ra and 232Th activity concentrations (r = 0.64) indicate a statistically significant, 

moderately strong relationship. The values of r for 40K are lower (0.34 and 0.31) however, 

still indicate statistically significant, weak but non-zero relationships. 

 

Activity concentration 

Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 
226Ra 46 18 26 28 31 41 29 5 1.01 0.74 0.09 
232Th 46 19 28 32 36 50 32 6 1.05 1.01 0.13 

40K 46 281 330 364 384 488 366 51 1.68 -0.08 0.09 

Tab.6.: Count (sample number), minimum, lower quartile, median, upper quartile, maximum, 

average, st. deviation (Bq kg-1), st. skewness, st. kurtosis and MAD/median for all 226Ra, 232Th 

and 40K activity concentration results (Ra-C-G, Th-C-G and K-C-G). 
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Fig.14.: Box-whisker plots and frequency histograms of all 226Ra, 232Th and 40K activity 

concentration results (Ra-C-G, Th-C-G and K-C-G). 

The adobe sample statistics for the three studied areas separately (Ra-C-H, Th-C-H and 

K-C-H) are summarized in Tab.7. and visualized in Fig.15. The 226Ra activity concentration 

median values are 28, 31 and 26 Bq kg-1, the 232Th medians are 29, 37 and 29 Bq kg-1 and the 
40K medians are 367, 360 and 365 Bq kg-1 for Békés County, E-Mecsek Mts. and Sajó and 

Hernád Rivers Valleys, respectively. MW tests show statistically significant differences 

among all three 226Ra medians and satisfy that 232Th activity concentrations of adobe samples 

originated from E-Mecsek Mts. are statistically significantly higher than that of other adobe 
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samples (Fig.15.). MW tests did not show any statistically significant differences among 40K 

activity concentration medians at the three studied areas. 

 

Activity concentration 

  
Count Min. 

L. 
quartile 

Median
U. 

quartile
Max. Average

St. 
dev.

St. 
skewness 

St. 
kurtosis 

MAD/Median 

22
6 R

a Békés County 18 23 27 28 30 38 29 4 2.09 1.55 0.07 
E-Mecsek Mts. 18 25 28 31 34 41 31 4 1.20 0.41 0.08 

S-H Rivers Valleys 10 18 22 26 27 32 25 4 0.16 -0.09 0.12 

23
2 T

h Békés County 18 22 27 29 32 36 29 4 -0.22 -0.25 0.09 

E-Mecsek Mts. 18 29 35 37 40 50 38 5 1.56 1.89 0.07 

S-H Rivers Valleys 10 19 25 29 31 32 28 4 -1.36 0.05 0.09 

40
K

 Békés County 18 285 332 367 428 488 379 60 0.70 -0.74 0.12 
E-Mecsek Mts. 18 281 330 360 375 473 360 46 1.46 0.94 0.08 

S-H Rivers Valleys 10 286 317 365 382 413 356 41 -0.45 -0.49 0.08 

Tab.7.: Count (sample number), minimum, lower quartile, median, upper quartile, maximum, 

average, st. deviation (Bq kg-1), st. skewness, st. kurtosis and MAD/median for 226Ra, 232Th 

and 40K activity concentration results separately for the three studied areas (Ra-C-H, 

Th-C-H and K-C-H). 

 

Fig.15.: Box-whisker plots of 226Ra, 232Th and 40K activity concentration results separately for 

the three studied areas (Ra-C-H, Th-C-H and K-C-H). 
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6.1.2.1. Hazard indices of samples 

As the statistics of hazard indices directly depend on the previously shown 226Ra, 232Th and 
40K activity concentration data it is not informative to present them in details in tables. 

However, they can be seen on Fig.16. The median and maximum are meaningful to compare 

to threshold values. The Raeq, I, Hex and Hin hazard indices calculations (Eq.6., 7., 8., 9.) show 

medians of 105 Bq kg-1, 0.39, 0.28 and 0.36, respectively. Even the maximum values of 141 

Bq kg-1, 0.52, 0.38 and 0.47 for the same indices, respectively are far below all the usually 

applied threshold values of 370 Bq kg-1 and 1 (Fig.16., SJ2.).  

 

 

Fig.16.: Box-whisker plots of Raeq and I, Hex and Hin hazard indices (Eq.6., 7., 8., 9.) of the 46 

adobe samples. The Raeq threshold of 370 Bq kg-1 and the I, Hex and Hin thresholds of 1 are 

marked on the scales. 

6.1.2.2. Estimated annual external effective doses in dwellings 

The statistics of annual external effective dose estimation results from 226Ra, 232Th and 40K 

activity concentrations of adobe samples (Eq.10., 11., EDRaThK-Y-G) are summarized in 

Tab.8. and visualized in Fig.17. The estimated annual effective dose has a median of 

0.45 mSv y-1. For other measures see Fig.17. 

 

Estimated annual external effective dose 

Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

46 0.31 0.41 0.45 0.48 0.61 0.45 0.06 0.64 0.90 0.07 

Tab.8.: Count (sample number), minimum, lower quartile, median, upper quartile, maximum, 

average, st. deviation (mSv y-1), st. skewness, st. kurtosis and MAD/median for all estimated 

annual external effective doses from 226Ra, 232Th and 40K activity concentrations of adobe 

samples (EDRaThK-Y-G). 
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Fig.17.: Box-whisker plot and frequency histogram of all estimated annual external effective 

doses from 226Ra, 232Th and 40K activity concentrations of adobe samples (EDRaThK-Y-G). 

6.1.3. Radon and thoron emanation fractions of samples 

Dividing the radon and thoron emanation results by the measured 226Ra and 232Th activity 

concentrations, the radon and thoron emanation fractions are gained for the purposes 

described in Chapter 2.3.1. Hence, altogether 92 radon and thoron emanation fraction data are 

available for the 46 adobe samples. The relative uncertainties were around 19 and 20 % for 

radon and thoron emanation fractions, respectively. Here it is noted again that any individual 

thoron emanation fraction data should be handled carefully. However, statistics of sample 

groups presented below provide real information about the general levels. 

The statistics for all radon and thoron emanation fraction data (fRnE-C-G and fTnE-C-G) of 

samples originated from either of the studied areas are summarized in Tab.9. and visualized in 

Fig.18. It is seen that the median values are 27 and 18 % for radon and thoron emanation 

fractions, respectively. Based on the MW test, the 18 % thoron emanation fraction median is 

statistically significantly lower than the 27 % of radon. The linear correlation coefficient 

between radon and thoron emanation fractions (r = 0.31) indicate a statistically significant but 

weak relationship.  
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Emanation fraction 

  Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

Radon 46 12 24 27 32 53 28 7 1.67 2.23 0.17 
Thoron 46 7 13 18 22 38 18 7 1.51 0.90 0.24 

Tab.9.: Count (sample number), minimum, lower quartile, median, upper quartile, maximum, 

average, st. deviation (%), st. skewness, st. kurtosis and MAD/median for all radon and 

thoron emanation fraction results (fRnE-C-G and fTnE-C-G). 

 

Fig.18.: Box-whisker plots and frequency histograms of all radon and thoron emanation 

fraction results (fRnE-C-G and fTnE-C-G). 

The adobe sample statistics for the three studied areas separately (fRnE-C-H and fTnE-C-H) 

are summarized in Tab.10. and visualized in Fig.19. The radon emanation fraction median 

values are 26, 27 and 34 %, whereas those of thoron are 18, 17 and 20 % for Békés County, 

E-Mecsek Mts. and Sajó and Hernád Rivers Valleys, respectively. The MW tests carried out 

show that the radon emanation fraction median of adobe samples from Sajó and Hernád 

Rivers Valleys is statistically significantly higher than that of adobe samples from the other 

two studied areas (Fig.19.). The thoron emanation fractions also tend to be higher at Sajó and 
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Hernád Rivers Valleys than at Békés County and E-Mecsek Mts. (Fig.19.). However, the MW 

tests did not show any statistically significant differences among the medians. 

 

Emanation fraction 

  
Count Min. 

L. 
quartile 

Median
U. 

quartile
Max. Average

St. 
dev.

St. 
skewness 

St. 
kurtosis 

MAD/Median

R
ad

on
 Békés County 18 12 23 26 31 33 26 6 -1.37 0.05 0.18 

E-Mecsek Mts. 18 16 24 27 33 35 28 6 -0.34 -0.63 0.16 

S-H Rivers Valleys 10 19 26 34 40 53 35 10 0.38 0.16 0.19 

T
h

or
on

 Békés County 18 8 14 19 21 28 18 5 0.30 -0.34 0.22 

E-Mecsek Mts. 18 7 13 17 21 27 17 6 -0.11 -0.49 0.25 

S-H Rivers Valleys 10 7 13 20 28 38 20 10 0.61 -0.23 0.36 

Tab.10.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (%), st. skewness, st. kurtosis and MAD/median for radon 

and thoron emanation fraction results separately for the three studied areas (fRnE-C-H and 

fTnE-C-H). 

 

Fig.19.: Box-whisker plots of radon and thoron emanation fraction results separately for the 

three studied areas (fRnE-C-H and fTnE-C-H).  

6.1.4. Grain size distributions of samples 

The results of grain size distribution measurements are presented in a different structure 

than other results. First the inorganic raw material of adobe is classified into soil texture 

classes, then the characteristic peaks in clay and silt fractions are observed (PV5., 6. and 7.), 

and finally the statistics of estimated specific surface area results (SSA) are presented. At the 

end of this subchapter a correlation analysis is carried out for carefully selected grain size 

fractions vs. 226Ra, 232Th, 40K activity concentrations and radon, thoron emanation fractions. 
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6.1.4.1. Soil texture classification of inorganic raw materials in 

adobe – clay, silt and sand 

After carefully coupling the mass% and the volume% data of wet sieving and laser grain 

size analysis, the following results are gained. The proportions of clay (< 2 μm), silt 

(2-50 μm) and sand (0.05-2 mm) show medians of 15, 73 and 9 mass%, respectively. The 

individual data points are shown in Fig.20. Based on these results, the USDA soil texture 

classification of the inorganic raw material of adobes show a homogeneous sample group: 

almost all samples fall into the silt loam class. Only one significant exception is observed 

from Sajó and Hernád Rivers Valleys (Fig.20.). 

 

 

Fig.20.: Classification of inorganic raw materials in the 46 adobe building material samples 

by the USDA soil texture triangle (Wunsch 2009): silt loam. The red quadrates, blue circles 

and green triangles represent the adobe samples from Békés County, E-Mecsek Mts. and Sajó 

and Hernád Rivers Valleys, respectively. 
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6.1.4.2. Characteristic peaks in clay and silt fractions 

The representative detailed results of laser grain size analysis in clay and silt fractions 

(0-50 µm) are presented in Fig.21. (up to 63 µm grain size already in the sand fraction). On 

these graphs three characteristic peaks, always at the same grain size positions are observed in 

most of the adobe samples: at 2-3, 10 and 30 µm grain sizes17 (Fig.21.). Only two samples 

from Békés County did not show all of these peaks: the one at 30 µm is lacking. However, 

more significant differences can be observed in the amplitudes than in positions. This 

variation is described by the maximum volume% values (proportion among other size grains, 

Fig.21.). The 2-3 µm peak shows maximum volume% values of 2.5, 2 and 2 volume%, the 10 

µm peak of 4, 3.5 and 3.5 volume% and the 30 µm peak of 2.5, 5 and 3.5 volume% at Békés 

County, E-Mecsek Mts. and Sajó and Hernád Rivers Valleys, respectively (Fig.21.). The 

proportion of grains with 30 µm grain size varies the most significantly among studied areas. 

 

                                                 
17These are the better grain size (diameter) resolution graphs of 27 adobe samples which were measured by 

the instrument of Research Centre for Astronomy and Earth Sciences, Hungarian Academy of Sciences. On the 
weaker resolution graphs measured by the instrument of Lithosphere Fluid Research Lab, the 10 and 30 µm 
peaks overlap.  
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Fig.21.: Characteristic peaks at 2-3, 10 and 30 µm grain sizes in adobe samples from the 

three studied areas of Békés County, E-Mecsek Mts. and Sajó and Hernád Rivers Valleys. The 

figure presents the maximum volume% results at the characteristic peaks based on the better 

grain size resolution measurements of 27 adobe samples. 
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6.1.4.3. Estimated specific surface areas of samples 

Altogether 46 specific surface area data were estimated for all of the adobe samples. The 

uncertainty of the estimation is high due to reasons described in Chapter 4.1.4.3. However, 

statistics of sample groups presented below provide real information about the general levels. 

The statistics for all specific surface area data (SSA-C-G) of samples originated from either 

of the studied areas are summarized in Tab.11. and visualized in Fig.22. The median value is 

given to be 0.51 m2 g-1. 

 

Estimated specific surface area 

Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

46 0.32 0.43 0.51 0.54 0.72 0.49 0.10 0.71 -0.29 0.12 

Tab.11.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (m2 g-1), st. skewness, st. kurtosis and MAD/median for all 

estimated specific surface areas of adobe samples (SSA-C-G). 

 

Fig.22.: Box-whisker plot and frequency histogram of all estimated specific surface areas of 

adobe samples (SSA-C-G). 
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The adobe sample statistics for the three studied areas separately (SSA-C-H) are 

summarized in Tab.12. and visualized on Fig.23. The median values are 0.54, 0.46 and 

0.51 m2 g-1 for Békés County, E-Mecsek Mts. and Sajó and Hernád Rivers Valleys, 

respectively. These medians all fall into the same order of magnitude, however, the MW tests 

carried out reveal that the specific surface area median of adobe samples from Békés County 

is statistically significantly higher than that of adobe samples from E-Mecsek Mts. (Fig.23.). 

 

Estimated specific surface area 

 
Count Min. 

L. 
quartile 

Median 
U. 

quartile 
Max. Average 

St. 
dev. 

St. 
skewness 

St. 
kurtosis 

MAD/Median 

Békés County 18 0.32 0.47 0.54 0.66 0.72 0.55 0.11 -0.42 -0.58 0.17 
E-Mecsek Mts. 18 0.33 0.38 0.46 0.51 0.54 0.45 0.07 -0.76 -1.06 0.10 

S-H Rivers Valleys 10 0.32 0.44 0.51 0.54 0.56 0.48 0.08 -1.23 -0.22 0.09 

Tab.12.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (m2 g-1), st. skewness, st. kurtosis and MAD/median for 

estimated specific surface areas of adobe samples separately for the three studied areas 

(SSA-C-H). 

 

Fig.23.: Box-whisker plots of estimated specific surface areas of adobe samples separately for 

the three studied areas (SSA-C-H).  
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6.1.4.4. Correlation analysis: percentage of grain size fractions vs. 
226Ra, 232Th, 40K activity concentrations, radon, thoron 

emanation fractions 

The correlation analysis was carried out in two parallel steps: sample parameters (226Ra, 
232Th, 40K activity concentrations, radon, thoron emanation fractions) vs. (1) clay, silt and 

sand fractions and vs. (2) observed peaks in clay and silt fractions, such as ranges of 0-1, 1-4, 

4-20 and 20-63 µm (Fig.21.). The correlation coefficients are given here for the three studied 

areas separately because of their observed significant differences. These are highlighted by 

frames in tables when they are shown to be statistically significant. 

6.1.4.4.1. Correlations with clay, silt and sand fractions 

Correlation coefficients among 226Ra, 232Th, 40K activity concentrations, radon, thoron 

emanation fractions (Ra-C-H, Th-C-H, K-C-H, fRnE-C-H, fTnE-C-H) and proportions of clay, 

silt and sand in the grain size distributions for adobe samples of the three studied areas are 

shown in Tab.13. At Békés County and Sajó and Hernád Rivers Valleys the 226Ra, 232Th, 40K 

activity concentrations generally show positive correlation coefficients with silt and clay 

fractions. However, at E-Mecsek Mts. the results show statistically significant, but inverse 

relationships with silt fraction. The radon emanation fraction seems to be connected the most 

to the proportion of silt fraction. 

 

Békés County E-Mecsek Mts. Sajó and Hernád Rivers Valleys 

r  Ra Th K fRnE fTnE Ra Th K fRnE fTnE Ra Th K fRnE fTnE 

clay 0.25 0.19 0.43 -0.09 0.09 0.17 0.16 0.13 0.09 0.23 0.22 0.47 0.00 0.29 -0.15 

silt 0.34 0.11 -0.08 0.49 -0.19 -0.22 -0.59 -0.54 0.12 -0.10 0.68 0.64 0.88 0.20 0.27 

sand -0.47 -0.24 -0.19 -0.40 0.11 0.08 0.43 0.39 -0.15 -0.02 -0.69 -0.71 -0.83 -0.25 -0.21 

Tab.13.: Correlation coefficients for the three studied areas among 226Ra, 232Th, 40K activity 

concentrations, radon, thoron emanation fractions (Ra-C-H, Th-C-H, K-C-H, fRnE-C-H, 

fTnE-C-H) and the estimated proportions of clay, silt and sand in the grain size distributions. 

The colors from blue to red indicate increasing correlation coefficients among which the ones 

referring to statistically significant relationships are highlighted by frames. 

6.1.4.4.2. Correlations with characteristic peaks in clay and silt fractions 

The correlation coefficients among 226Ra, 232Th, 40K activity concentrations, radon, thoron 

emanation fractions (Ra-C-H, Th-C-H, K-C-H, fRnE-C-H, fTnE-C-H) and 2-3, 10 and 30 µm 

characteristic peaks in clay and silt fractions, i.e. 0-1, 1-4, 4-20 and 20-63 µm grain size 
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ranges, are shown in Tab.14. In this case, Békés County and E-Mecsek Mts. seem to be 

similar: for 226Ra, 232Th, 40K activity concentrations positive correlation coefficients are 

observed with 1-4 and 4-20 µm ranges. Whereas, in case of Sajó and Hernád Rivers Valleys 

the positive correlation coefficients are observed with the 20-63 µm range. The radon 

emanation fraction is the most connected to the presence of 10 µm peak. 

 

Békés County E-Mecsek Mts. Sajó and Hernád Rivers Valleys 

r  Ra Th K fRnE fTnE Ra Th K fRnE fTnE Ra Th K fRnE fTnE 

0-1 µm -0.01 0.11 0.30 -0.25 0.07 -0.09 -0.21 -0.12 0.11 0.03 -0.21 -0.43 -0.56 -0.53 -0.48 

1-4 µm 0.25 0.27 0.58 -0.23 0.06 0.10 0.27 0.25 0.03 0.42 -0.42 -0.27 -0.81 -0.08 -0.40 

4-20 µm 0.43 0.26 0.62 -0.05 -0.12 0.34 -0.03 0.31 0.67 -0.07 -0.12 0.20 -0.06 0.37 0.15 

20-63 µm -0.29 -0.26 -0.64 0.16 -0.01 -0.23 -0.08 -0.30 -0.43 -0.22 0.41 0.21 0.76 -0.01 0.33 

Tab.14.: Correlation coefficients for the three studied areas among 226Ra, 232Th, 40K activity 

concentrations, radon, thoron emanation fractions (Ra-C-H, Th-C-H, K-C-H, fRnE-C-H, 

fTnE-C-H) and the proportions of characteristic peaks in clay and silt fractions. The colors 

from blue to red indicate increasing correlation coefficients among which the ones referring 

to statistically significant relationships are highlighted by frames. 

6.1.4.4.3. Correlations with specific surface area 

The correlation coefficients among 226Ra, 232Th, 40K activity concentrations, radon, thoron 

emanation fractions (Ra-C-H, Th-C-H, K-C-H, fRnE-C-H, fTnE-C-H) and specific surface 

areas (SSA-C-H) are shown in Tab.15. At Békés County and Sajó and Hernád Rivers Valleys 

the 40K activity concentrations show statistically significant positive correlation coefficients 

with the specific surface area. The values with 226Ra and 232Th activity concentrations are also 

positive, but statistically insignificant. At E-Mecsek Mts. the same results show no 

relationship. The correlation coefficients of specific surface area with thoron emanation 

fraction are more positive than that with radon emanation fraction in case of E-Mecsek Mts. 

and Sajó and Hernád Rivers Valleys. 

 

Békés County E-Mecsek Mts. Sajó and Hernád Rivers Valleys 

Ra Th K fRnE fTnE Ra Th K fRnE fTnE Ra Th K fRnE fTnE 

SSA 0.37 0.29 0.52 0.06 -0.01 0.01 -0.08 -0.03 0.10 0.27 0.50 0.29 0.70 0.09 0.24 

Tab.15.: Correlation coefficients for the three studied areas among 226Ra, 232Th, 40K activity 

concentrations, radon, thoron emanation fractions (Ra-C-H, Th-C-H, K-C-H, fRnE-C-H, 

fTnE-C-H) and the estimated specific surface areas (SSA-C-H). The colors from blue to red 

indicate increasing correlation coefficients among which the ones referring to statistically 

significant relationships are highlighted by frames.  



76 

 

6.2. Results of in-situ measurements in dwellings 

6.2.1. Indoor radon and thoron activity concentrations in 

dwellings 

In the 53 adobe dwellings of Békés County 190 radon and 189 thoron measurement data 

are available for the four seasons in the measurement period from December 2010 to 

November 2011 (SJ6.). For radon and thoron activity concentrations, the overall uncertainties 

are determined to be 20 and 30 % and the lowest accepted LLDs to be around 15 and 

80 Bq m-3, respectively18. As already noted above (Chapter 4.2.2.), to represent low values in 

the statistics, all measurement data were used in the statistical evaluation even though a part 

of them were below their LLDs (AMC 2001, Reimann et al. 2008). The annual average radon 

and thoron activity concentrations were determined in 43 and 42 adobe dwellings, 

respectively, only where measurement data were available in all seasons. These annual 

average radon and thoron activity concentrations were used for inhalation dose estimations in 

dwellings.  

6.2.1.1. Annual activity concentrations 

The statistics of annual average activity concentrations at Békés County  

(RnC-Y-H and TnC-Y-H) are summarized in Tab.16. and visualized on Fig.24. It is shown 

that annual radon activity concentration has a median of 188 Bq m-3, and it is 232 Bq m-3 for 

thoron. The geometric means of the results are also presented for comparison purposes in the 

discussion, they are 166 and 211 Bq m-3, respectively for radon and thoron. 

Being consequent with the standardized skewness and the standardized kurtosis values 

(Tab.16., Fig.24.), SW tests reject the normality, but do not reject the lognormality for annual 

average radon data and for thoron, it cannot reject the idea of neither normal nor lognormal 

distributions19. For radon the best fitting distribution is the lognormal distribution, and for 

thoron, normal distribution better fits than lognormal. Summarizing, during further analysis of 

the results it is accepted that annual radon data come from a lognormal and annual thoron data 

come from a normal distribution (SJ6.). No significant connection was found with the type of 

wall coating and the level of heating.  

                                                 
18These are given based on the calculation of the manufacturer (Kocsy 2012), however based on Stojanovska 

et al. (2013) the thoron LLD is calculated to be 7 Bq m-3. 
19However, taking the log10=lg instead of loge=ln of the data, the lognormal distribution is rejected. 
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Annual indoor activity concentration 

Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

Radon 43 45 116 188 232 609 194 113 4.24 4.90 0.29 
Thoron 42 33 154 232 325 576 245 124 1.64 0.49 0.35 

Tab.16.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (Bq m-3), st. skewness, st. kurtosis and MAD/median for all 

annual indoor radon and thoron activity concentration results at Békés County (RnC-Y-H 

and TnC-Y-H). 

 

Fig.24.: Box-whisker plots and frequency histograms of all annual indoor radon and thoron 

activity concentration results at Békés County (RnC-Y-H and TnC-Y-H, SJ6.). 

The statistics for the local clay, loess and turf geological formations  

(RnC-Y-JH and TnC-Y-JH) are summarized in Tab.17. and visualized on Fig.25. The radon 

activity concentration median values are 199, 175 and 102 Bq m-3, whereas the thoron 

medians are 234, 211 and 320 Bq m-3 for clay, loess and turf, respectively. All distributions 

strongly overlap and the sample numbers are low (Fig.25.), but MW tests still indicate that 

radon annual average median on clay (199 Bq m-3) is statistically significantly higher than on 
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turf (102 Bq m-3) (SJ6.). The highest values in case of both radon and thoron are detected on 

clay formations (Fig.25.). 

 

Annual indoor activity concentration 

Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

R
ad

on
 Clay 26 68 124 199 242 609 215 126 3.40 3.16 0.28 

Loess 12 49 132 175 232 330 181 85 0.20 -0.35 0.30 

Turf 5 45 66 102 146 221 116 70 0.77 -0.01 0.43 

T
h

or
on

 Clay 26 33 165 234 331 576 253 134 1.47 0.53 0.34 
Loess 12 69 140 211 273 389 210 97 0.42 -0.28 0.34 

Turf 4 116 209 320 382 425 295 130 -0.85 0.73 0.19 

 Tab.17.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (Bq m-3), st. skewness, st. kurtosis and MAD/median for 

annual indoor radon and thoron activity concentration results separately for different types of 

geological formations (clay, loess and turf) at Békés County (RnC-Y-JH and TnC-Y-JH). 

 

Fig.25.: Box-whisker plots of annual indoor radon and thoron activity concentration results 

separately for different types of geological formations (clay, loess and turf) at Békés County  

(RnC-Y-JH and TnC-Y-JH, SJ6.). 

The statistics for Pleistocene and Holocene age formations (RnC-Y-KH and TnC-Y-KH) 

are summarized in Tab.18. and visualized on Fig.26. The radon activity concentration median 

values are 188 and 176 Bq m-3, whereas the thoron medians are 206 and 263 Bq m-3 for 

Pleistocene and Holocene, respectively. The distributions strongly overlap (Fig.26.), MW 

tests do not show any significant differences for the two geological ages.  
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Annual indoor activity concentration 

   
Count Min. 

L.  
quartile 

Median 
U.  

quartile 
Max. Average 

St.  
dev. 

St.  
skewness 

St.  
kurtosis 

MAD/Median 

Radon 
Pleistocene 17 49 139 188 232 330 188 75 -0.17 -0.16 0.26 
Holocene 26 45 104 176 224 609 198 134 3.33 2.80 0.36 

Thoron 
Pleistocene 17 69 146 206 236 389 202 88 0.60 -0.12 0.28 

Holocene 25 33 200 263 340 576 274 137 0.72 -0.07 0.29 

Tab.18.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (Bq m-3), st. skewness, st. kurtosis and MAD/median for 

annual indoor radon and thoron activity concentration results separately for different ages of 

geological formations (Pleistocene and Holocene) at Békés County (RnC-Y-KH and 

TnC-Y-KH). 

 

Fig.26.: Box-whisker plots of annual indoor radon and thoron activity concentration results 

separately for different ages of geological formations (Pleistocene and Holocene) at 

Békés County (RnC-Y-KH and TnC-Y-KH). 

6.2.1.2. Estimated annual radon and thoron inhalation doses in 

dwellings 

The statistics of estimated annual radon inhalation dose (IDRn-Y-H, Eq.12.) are 

summarized in Tab.19. and visualized on Fig.27. Separate detailed statistics is not meaningful 

to carry out because they are directly calculated from RnC-Y-H. The MAD/median and the 

statistical distribution are equal. However, the median of all calculated radon inhalation doses 

is 4.74 mSv y-1 and the average is 4.90 mSv y-1 (Fig.27.). In three studied dwellings the 

inhalation dose exceeds 10 mSv y-1. 

  



80 

 

Estimated radon inhalation dose 

Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

43 1.15 2.92 4.74 5.85 15.37 4.90 2.86 4.24 4.90 0.29 

Tab.19.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (mSv y-1), st. skewness, st. kurtosis and MAD/median all 

estimated radon inhalation doses at Békés County (IDRn-Y-H). 

 

Fig.27.: Box-whisker plot and frequency histogram of all estimated radon inhalation doses at 

Békés County (IDRn-Y-H, SJ6.). 

Since similar reliable dose estimation is not possible to carry out for thoron isotope with 

the obtained data (Chapter 4.2.2.1.) only a crude estimation, based on the thoron activity 

concentration data and international experiences, is available (it would be IDTn-Y-H). This 

should be carefully accepted. The individual values might have 100-200 % uncertainty 

(Omori et al. 2013). However, the average value is probably close to the reality. It shows that 

thoron gives at least about 30 % of the total inhalation (internal effective) dose in the studied 

dwellings (SJ6.). 
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6.2.1.3. Seasonal activity concentrations 

The statistics for the radon and thoron activity concentration measurement data in the four 

seasons (RnC-S-H and TnC-S-H) are summarized in Tab.20. and visualized by box-whisker 

plots on Fig.28. (SJ6.). The relevant measures and the linear correlation coefficients in 

Tab.21. are analyzed below. 

 

Indoor activity concentration in seasons 

    Count Min. 
L. 

quartile 
Median 

U. 
quartile 

Max. Average 
St. 

dev. 
St. 

skewness 
St. 

kurtosis 
MAD/Median 

R
ad

on
 Winter 50 45 100 217 334 888 244 179 4.45 4.20 0.54 

Spring 48 22 92 159 222 634 171 108 4.91 8.30 0.40 

Summer 46 3 43 70 109 281 81 57 4.02 3.63 0.45 

Autumn 46 55 171 276 339 827 287 160 3.57 3.18 0.29 

T
h

or
on

 Winter 50 75 203 372 491 2306 407 344 11.00 27.92 0.36 

Spring 47 8 139 228 388 1264 284 218 5.97 10.85 0.54 

Summer 46 11 78 156 266 914 212 210 5.15 4.92 0.65 

Autumn 46 14 79 174 225 340 163 86 -0.10 -1.21 0.35 

Tab.20.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (Bq m-3), st. skewness, st. kurtosis and MAD/median for all 

seasonal radon and thoron activity concentration measurement results at Békés County 

(RnC-S-H and TnC-S-H, SJ6.). 

 

Fig.28.: Box-whisker plots of all seasonal radon and thoron activity concentration 

measurement results at Békés County (RnC-S-H and TnC-S-H, SJ6.). In case of thoron, 

three outlier values are not shown on the figure for better visibility. 
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r Winter-Spring Winter-Summer Winter-Autumn Spring-Summer Spring-Autumn Summer-Autumn 

RnC 0.89 0.32 0.90 0.50 0.90 0.50 

TnC 0.77 0.18 0.44 0.54 0.55 0.36 

Tab.21.: Correlation coefficients among radon and thoron activity concentrations measured 

in four seasons (RnC-S-H and TnC-S-H, SJ6.). The tones of red from light to deep indicate 

increasing correlation coefficients among which the ones referring to statistically significant 

relationships are highlighted by frames. 

6.2.1.3.1. Seasonal medians and MW tests 

The radon activity concentration median values are 217, 159, 70 and 276 Bq m-3 for 

winter, spring, summer and autumn, respectively. Tab.20. and Fig.28. show that radon 

displays a close to typical seasonal variation with high values in winter and autumn, lower 

values in spring and low values in summer. Winter and autumn medians are three to four 

times higher than that of summer. The MW tests show that there are statistically significant 

differences among the seasonal median radon activity concentrations, except the winter-

autumn pair (SJ6.). 

At the same time thoron level is steadily decreasing during the measurement period 

(Tab.20., Fig.28.). The medians are 372, 228, 156 and 174 Bq m-3 for winter, spring, summer 

and autumn, respectively. Winter median is more than twice higher than that of summer and 

autumn. MW tests show that there are statistically significant differences among the thoron 

activity concentration medians in seasons, except the summer-autumn pair (SJ6.). 

Medians of thoron activity concentration data tend to exceed those of radon in winter, 

spring and summer. However, in autumn, radon exceeds almost twice the thoron median 

(Tab.20., Fig.28.). Based on MW tests, there are statistically significant differences between 

the radon and thoron activity concentration medians in all seasons. 

6.2.1.3.2. Seasonal statistical distributions and SW tests 

The SW tests verify what standardized skewness and the standardized kurtosis values 

(Tab.20.) suggest, namely that only autumn thoron activity concentration come from a normal 

distribution and that winter, spring and autumn radon and winter thoron results are 

lognormally distributed. However, the SW tests reject both normality and lognormality in the 

cases of summer radon, as well as spring and summer thoron measurements (SJ6.). 

6.2.1.3.3. Correlation analysis for seasons 

Linear correlation coefficients among different seasons were studied for both radon and 

thoron (Tab.21.). Radon shows r ≈ 0.9 among winter, spring and autumn seasons in different 
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dwellings, whereas summer has weaker r values between 0.32 and 0.50 (Tab.21.). All of these 

indicate statistically significant non-zero correlations, namely strong relationships among 

seasons.  

Thoron generally shows lower correlation coefficients. Most of them fall between 0.36 and 

0.55, whereas for winter and spring r is higher (0.77) and for winter and summer r is lower 

(0.18) (Tab.21.). These indicate statistically significant non-zero correlations, i.e. moderate 

relationships among seasons, except winter and summer. 

The linear correlation coefficients between the two studied isotopes are r = 0.12, 0.00, 

-0.04 and 0.23 for winter, spring, summer and autumn seasons, respectively (SJ6.). These are 

all statistically insignificant. 

6.2.2. Measured indoor γ dose rates in dwellings 

In 48 adobe dwellings of Békés County 144 γ dose rate measurement data are available. 

These are dose rate values on wall surfaces, ground surfaces and also at one meter height in 

the middle of the chosen rooms. The relative uncertainties (in this case, relative standard 

deviations) of the data were always around 7 %. The statistics for the three detector positions 

do not show statistically significant differences (MW tests). Therefore, in the presentation of 

the results one data group is considered which is the average γ dose rate in a dwelling. This is 

representing the sum of γ-radiation of the cosmic background and the terrestrial radionuclide 

concentration of the soil and the building materials (Chapter 4.2.3.) 

The statistics of all data from Békés County (γDR-Y-H) is summarized in Tab.22. and 

visualized on Fig.29. It is shown that the average γ dose rate has a median of 140 nSv h-1. 

Taking into account the indoor occupancy time applied elsewhere (7012.8 h y-1, Eq.11.) this 

140 nSv h-1 value is leading to a 0.98 mSv y-1 external effective dose on the annual basis 

(Tab.22.). 

The linear correlation coefficients with annual radon and thoron activity concentration data  

(RnC-Y-H and TnC-Y-H) are low and statistically insignificant (r = 0.23 and 0.08, 

respectively). 
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Average γ dose rate (nSv h-1) and resulting annual external effective dose (mSv y-1) 

Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

nSv h-1 
48 

104 121 140 160 196 143 24 
0.55 -1.22 0.14 

mSv y-1 0.73 0.85 0.98 1.12 1.37 1.00 0.17 

Tab.22.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (nSv h-1, mSv y-1), st. skewness, st. kurtosis and MAD/median 

for all average γ dose rate measurement results at Békés County (γDR-Y-H) and the values of 

resulting annual external effective dose. 

 

Fig.29.: Box-whisker plot and frequency histogram of all γ dose rate measurement results at 

Békés County (γDR-Y-H). 
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The statistics for local geological formations of clay, loess and turf (γDR-Y-JH) are 

summarized in Tab.23. and visualized on Fig.30. The average γ dose rate median values are 

153, 131 and 139 nSv h-1 for clay, loess and turf, respectively. All distributions strongly 

overlap (Fig.30.). However, MW tests still show that average γ dose rate median on clay 

(153 nSv h-1) is statistically significantly higher than on loess (131 nSv h-1). Other pairs do 

not show statistically significant differences. 

 

Average γ dose rate 

Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median 

Clay 25 106 133 153 171 196 150 25 -0.10 -0.85 0.12 
Loess 18 104 116 131 154 177 133 23 0.83 -0.84 0.13 

Turf 5 123 134 139 152 162 142 15 0.17 -0.47 0.09 

Tab.23.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (nSv h-1), st. skewness, st. kurtosis and MAD/median for γ 

dose rate measurement results separately for different types of geological formations (clay, 

loess and turf) at Békés County (γDR-Y-JH). 

 

Fig.30.: Box-whisker plots of γ dose rate measurement results separately for different types of 

geological formations (clay, loess and turf) at Békés County (γDR-Y-JH). 

The statistics for Pleistocene and Holocene age environments (γDR-Y-KH) are 

summarized in Tab.24. and visualized on Fig.31. The average γ dose rate median values are 

138 and 152 nSv h-1 for Pleistocene and Holocene geological ages, respectively. The MW test 

does not show statistically significant difference between these medians.  
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Average γ dose rate 

  Count Min. L. quartile Median U. quartile Max. Average St. dev. St. skewness St. kurtosis MAD/Median

Pleistocene 21 104 116 138 154 177 135 22 0.50 -0.96 0.14 
Holocene 27 106 127 152 171 196 149 25 0.06 -0.92 0.13 

Tab.24.: Count (sample number), minimum, lower quartile, median, upper quartile, 

maximum, average, st. deviation (nSv h-1), st. skewness, st. kurtosis and MAD/median for γ 

dose rate measurement results separately for different ages of geological formations 

(Pleistocene and Holocene) at Békés County (γDR-Y-KH). 

 

Fig.31.: Box-whisker plots of γ dose rate measurement results separately for different ages of 

geological formations (Pleistocene and Holocene) at Békés County (γDR-Y-KH).
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7. DISCUSSION OF TERRESTRIAL RADIOCTIVITY IN 

ADOBE BUILDING MATERIAL AND DWELLINGS  

7.1. Evaluation of the assumed elevated terrestrial radiation risk in 

Hungarian adobe dwellings  

7.1.1. Hazard evaluation of adobe building material 

7.1.1.1. Definition of the radon hazard portion and its role in 

building material qualification 

This subchapter provides a theoretical evaluation of one of the building material hazard 

indices (Chapter 4.1.3.1.) supplied by the measurement results of adobe building materials 

(Chapter 6.1.2.1.). It is needed because many high quality papers on radiation hazard of 

building materials are now published without referring to the importance of direct radon (and 

thoron) emanation or exhalation measurements and use only the Hin index (Eq.9.) for 

“internal” qualification purposes. The author considers it too ambitious and has defined a new 

measure to point out some usually not recognized limitations of this index, Hin. The new 

measure is called the radon hazard portion, which was published in PV8. and SJ2. A simple 

calculation was used in Eq.18. to define this new measure, which is based on the difference 

between Hex (Eq.8.) and Hin (Eq.9.). 

 

% 100 1  (Eq.18.) 

 

where HR% is the so-called radon hazard portion (%) (SJ2.).  

The value of the HR% is related only to the 226Ra activity concentration of the building 

material and does not take into account the radon emanation factor, the gas diffusion 

coefficient, the density, porosity and permeability of the material. Therefore, despite the name 

of radon hazard portion, it has no correct information content about its radon hazard. HR% 

calculated for adobe samples are used below to point on the limitations and the need for a less 

ambitious use of Hin index in the literature. 

The HR% results of the studied adobe samples have a median and average of 28 % with a 

standard deviation of ±3 %. These values suggest that less than a third of the radiation hazard 
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is from internal/inhalation dose in dwellings made of adobe. This seems to be a significant 

underestimate considering the results and their further evaluation below. Moreover, the 

correlation coefficient between HR% and radon emanation results is statistically far from 

significant (r = 0.02). 

Therefore, the author considers Raeq and I indices to be more effective than Hex and Hin in 

building material qualification. Beside their correct information content, i.e. not trying to refer 

to internal radiation, these are the most frequently published values useful for comparison 

purposes. However, radon and thoron emanation values should not be neglected even if the 

hazard indices are low. Note that in some national regulations (e.g. Austria: ASI 2009, 

Netherlands: van der Graaf et al. 2001, Tuccimei et al. 2006) these properties are also 

involved in the qualification process. 

7.1.1.2. Building material qualification based on Raeq and I indices 

and evaluation of their radon and thoron emanations 

Whereas the 226Ra, 232Th and 40K activity concentration averages are 33, 28 and 

370 Bq kg-1 in Hungarian soils (UNSCEAR 2000), the measured results (Ra-C-H, Th-C-H 

and K-C-H) show median values of 28, 32 and 364 Bq kg-1, respectively in the studied adobe 

samples (Tab.6., Fig.14.). These values indicate comparably low terrestrial radionuclide 

contents for Hungarian adobe building materials. The considered Raeq and I hazard indices 

calculated based on these 226Ra, 232Th and 40K activity concentrations (Eq.6. and Eq.7.) are 

always below their given thresholds of 370 Bq kg-1 and 1 (unit) (Fig.16.). Further evaluation 

was first carried out by comparing the Raeq average to international references and other types 

of building materials studied by the author in SJ2. (Tab.25.).  

In the comparison of radium equivalent indices (Raeq, Tab.25.), the adobe samples were 

considered together with Hungarian brick samples and their averages were both compared to 

the clay brick (unfired and fired) building materials in the cited references (Beretka and 

Mathew 1985 and references therein). The Hungarian adobe samples show a Raeq average of 

103 Bq kg-1, whereas in the international studies those values range between 170 and 

352 Bq kg-1 for similar types of building materials. The adobe samples also show Raeq indices 

lower than or comparable to most of the other types of building materials studied in SJ2., with 

the exception of the two samples of concrete (Tab.25.). 
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Building material type 
This study and SJ2. Beretka and Mathew (1985) and references therein 

Hungary Australia Finland Germany Norway Sweden United Kingdom 

adobe 103 (46) 
218 (25) 241 204 274 352 170 

brick 113 (2) 

    
concrete 31 (2) 

85 (5) - 155 133 - - 
coal slag concrete 138 (3) 

    
coal slag 621 (6) 340 (3) 215 422 - - - 

    
gas silicate 107 (7) - - - - - - 

Tab.25.: The underlined average of determined adobe Raeq indices (Bq kg-1) in this study in 

comparison with international references and other types of building materials studied by the 

author and her coauthors (SJ2.). The sample numbers are indicated in brackets following the 

activity concentration values. 

The other building material hazard index considered to limit external dose in this study is 

the activity concentration index, I (Eq.7.). The value of this index varies among 0.27 and 0.52 

for the studied adobe samples (Fig.16.). All of these determined values are far below the 

accepted limit value of 1 (unit) responding to about 1 mSv y-1 external dose (EC 1999, limit 

value advised by Trevisi et al. 2012). It is noted that comparing to another, generally too 

ambitious (Trevisi et al. 2012) possible limit value of 0.5 corresponding to about 0.3 mSv y-1 

(EC 1999), one adobe sample exceeds it from E-Mecsek Mts., where all other results are also 

slightly elevated (for explanation see below in Chapter 7.2.1.1.). Overall, based on any 

building material indices, adobe samples cannot be considered hazardous. 

However, it is already mentioned above (Chapter 7.1.1.1.) that the radon and thoron 

emanation (RnE-C-G and TnE-C-G) properties should not be neglected even if the presented 

hazard indices are low. The median values were given among the results (Tab.4., Fig.12.) as 

7.9 and 5.7 kg-1 s-1 for Hungarian adobe radon and thoron emanations, respectively. In the 

evaluation of these values difficulties occur due to the possibly different measurement 

conditions applied in different publications such as the moisture content (e.g. Hassan et al. 

2011, Hosoda et al. 2007, Porstendörfer 1994, Sas 2012, Strong and Levins 1982, Tanner 

1980), the sample geometry and the inconsequences and diversity of applied emanation and/or 

exhalations units. However, the emanation results are elevated compared to most of the other 

types of building materials used in bulk amounts studied at Lithosphere Fluid Research Lab, 

Eötvös University (Völgyesi et al. 2011). Further evaluation of radon and thoron hazard of the 
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adobe building material is carried out by the help of the consequent indoor radon and thoron 

activity concentration results (Chapter 7.1.2.1). 

7.1.2. Evaluation of annual indoor radon and thoron activity 

concentration levels at Békés County 

7.1.2.1. International comparison 

An international comparison of some selected measures of annual indoor radon and thoron 

activity concentrations (Tab.16., Fig.24.) is summarized in Tab.26. (SJ6.) and shows the 

types of building materials and the measurement distances from the walls. The average, 

minimum and maximum values and geometric means of the results are presented covering the 

information found most frequently in the literature. 

Only three studies show high radon activity concentrations comparable to our results 

(Tab.16., Fig.24., Tab.26.). These were performed at Kővágószőlős, Hungary (Kávási et al. 

2007, Kovács 2010) known by its former uranium mine and in Kosovo and Metohija, Serbia 

(Milić et al. 2010). Thoron generally has low activity concentrations (<50 Bq m-3) 

(Chougaonkar et al. 2004, Deka et al. 2003, Kávási et al. 2007, Khokhar et al. 2008, Kovács 

2010, Milić et al. 2010, Sreenath Reddy et al. 2004, Stojanovska et al. 2011 and 2013, 

Tab.26.). However, elevated thoron activity concentrations were detected in Indian mud 

dwellings (Sreenath Reddy et al. 2004) and rural dwellings of Balkans (Zunić et al. 2010). 

Only in Chinese cave dwellings (Luo et al. 2005, Yamada et al. 2005) were thoron levels 

measured to be as high as in Hungarian adobe dwellings. It is seen that the annual radon and 

thoron activity concentrations measured in adobe dwellings at Békés County show elevated 

levels compared to results in other studies (Tab.26., SJ6.). 
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  Country Building material Distance Measure Radon Thoron 

This study Hungary - Békés County adobe 10 cm 

Av. 194 (43) 245 (42) 

Min.-Max. 45-609 (43) 33-576 (42) 

GM 166 (43) 211 (42) 

Kávási et al. 2007  
Hungary - Kővágószőlős various - summer 15-20 cm 

Av. 154 (72) 98 (72) 

Kovács 2010  GM 107 (80) 53 (74) 

Luo et al. 2005 China various 10 cm Av. 29 (100) 184 (100) 

Yamada et al. 2005 China 
cave dwelling  

(adobe) 
5-30 cm GM 81 (102) 261 (102) 

Sreenath Reddy  
et al. 2004 

India - Andhra Pradesh 

mud (adobe) - - - 143 (8) 

stone - - - 34 (60) 

mosaic - - - 31 (10) 

concrete - - - 33 (11) 

Deka et al. 2003  India - Assam various 10 cm Min.-Max. 40-215 (46) 13-38 (46) 

Khokhar et al. 2008 India - Chhattisgarh various 20 cm GM 26 (210) 18 (210) 

Chougaonkar et al. 2004 India - Kerala various 10 cm GM 23 (200) 24 (200) 

Milić et al. 2010  
Serbia - Kosovo  

and Metohija 
various - GM 224 (63) 43 (63) 

Stojanovska et al. 2011  
and 2013  

Macedonia various  50 cm GM 82 (437) 28 (53-300) 

Zunic et al. 2010 
Serbia 

Bosnia-Hercegovina 
rural dwellings 20 cm GM 82 (183) 109 (183) 

Tab.26.: The underlined average (av.), minimum-maximum (min.-max.) and geometric mean 

(GM) (Bq m-3) of determined annual indoor radon and thoron activity concentrations in this 

study (RnC-Y-H and TnC-Y-H, SJ6.) in comparison with international references. The 

sample numbers are indicated in brackets following the activity concentration values. 

7.1.2.2. Proportion of dwellings above reference levels 

The measured annual indoor radon activity concentration follows a lognormal distribution, 

whereas the author accepted that the annual thoron data are normally distributed 

(Chapter 6.2.1.1., Tab.16., Fig.24., SJ6.). In Fig.32. the scales of X and Y axes is chosen in 

such a way so that the plotted annual activity concentration values (X axes) vs. the cumulative 

probability (Y axes20) describe closely linear functions. For this purpose, the activity 

concentrations are presented on a log scale for radon, but on a linear scale for thoron.  

For radon, the 300 Bq m-3 as the highest reference level recommended by WHO (2009) 

was considered. Choosing a reference level for thoron is not as obvious as for radon 

                                                 
20It represents the inverse of a cumulative Gaussian distribution. Plotting a cumulative Gaussian distribution 

produces a sigmoidally-shaped curve. This curve, when displayed on a probability scale, appears as a straight 
line (Microcal Origin software, Help). 
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(Chapter 2.4.). In this study, for a comparison, the proportion of dwellings above the same 

activity concentration as for radon, 300 Bq m-3, is determined. However, it is emphasized that 

the same thoron effective dose must originate from a much higher activity concentration due 

to the one order of magnitude lower equilibrium factor of thoron. 

Based on Fig.32. and the fitted linear functions representing the lognormal (radon) and 

normal (thoron) distributions, the following four points are stated: (1) 14-17 % of the adobe 

dwellings at Békés County have higher radon activity concentration than the reference level 

of 300 Bq m-3 by 95 % probability, (2) in this study, 12 % of the dwellings were above this 

reference level (Fig.32., left side). (3) 29-32 % of the adobe dwellings at Békés County have 

higher thoron activity concentration than 300 Bq m-3 by 95 % probability and (4) the 

empirical proportion for thoron in this study is determined to be 33 % (Fig.32., right side) 

(SJ6.). 

 

Fig.32.: Cumulative probabilities of annual indoor radon and thoron activity concentrations 

(RnC-Y-H and TnC-Y-H, SJ6.). The activity concentrations are presented on a log scale for 

radon, and on a linear scale for thoron based on the results of SW tests. Red and green 

dashed lines show the fitted lognormal (radon) and normal (thoron) distribution functions 

with their 95 % confidence intervals. 

7.1.3. Evaluation of estimated and measured external and internal 

effective doses 

In this study, three effective dose values affecting residents via two different pathways are 

given among the results. These are estimated annual external effective doses (EDRaThK-Y-G) 
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in Chapter 6.1.2.2., in-situ measured γ dose rates (γDR-Y-H) in Chapter 6.2.2., and estimated 

radon inhalation doses (internal, IDRn-Y-H) in Chapter 6.2.1.2. The evaluation of these results 

is described below. 

The estimated annual external effective dose based on 226Ra, 232Th and 40K activity 

concentrations in adobe samples (EDRaThK-Y-G, Eq.10., 11.) is given to have a median of 

0.45 mSv y-1 in Hungarian adobe dwellings (Tab.8., Fig.17.). By subtracting the assumed 

50 nGy h-1 background radiation (EC 1999, Chapter 4.1.3.2.) from this result, the excess of 

building materials to the external dose received outdoors can be calculated. In this study the 

contribution of adobe to the received external dose is estimated to have a median of 

0.2 mSv y-1 and a maximum of 0.36 mSv y-1. These values are far below the accepted dose 

criterion of 1 mSv y-1 (EC 1999, Trevisi et al. 2012), explaining better the findings of the 

activity concentration index, I in Chapter 7.1.1.2. The actual, in-situ measured, γ dose rates 

(γDR-Y-H) indicate an annual effective dose median of 0.98 mSv y-1 (calculated from 

140 nSv h-1) and a maximum of 1.37 mSv y-1 (calculated from 196 nSv h-1) (Tab.22.). These 

measurements do not give the possibility to distinguish the contribution of the building 

material from that of the ground or cosmic radiation. However, considering an average 

0.4 mSv y-1 order of magnitude contribution of cosmic radiation (Fig.1., Eisenbud and Gesell 

1997, UNSCEAR 2000), and another significant contribution of the terrestrial radioactivity of 

the ground, these results also refer to a building material excess external dose far below the 

accepted criterion of 1 mSv y-1, hence verifying EDRaThK-Y-G results. 

One-two orders of magnitude higher internal effective doses are indicated to originate from 

radon (and thoron) inhalation than from γ-radiation excess of adobe building material. 

However, regarding inhalation dose, also a much higher, about 10 mSv y-1 effective dose 

criterion (300 Bq m-3 radon activity concentration, ICRP 2007, 2009, WHO 2009, 

Chapter 2.4.) could be applicable. The median of all estimated radon inhalation doses in 

adobe dwellings (IDRn-Y-H calculated by Eq.12.) is given to be 4.74 mSv y-1 (Tab.19., 

Fig.27.). As a comparison, the world average value is about 1.15 mSv y-1 (UNSCEAR 2006) 

which is equal to the minimum in the statistics. The estimated value exceeds 10 mSv y-1 in 

three studied dwellings which means the 7 % of the results. Additionally, thoron is estimated 

to contribute with at least about 30 % to the total inhalation dose (Chapter 6.2.1.2., SJ6.). 

Note the much lower contribution of thoron in an average environment, which was estimated 

to be between 13 % (Eisenbud and Gesell 1997) and 8 % (UNSCEAR 2000) (Chapter 2.1.). 

Therefore, thoron might be significantly further increasing the proportion of adobe dwellings 
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with not negligible inhalation dose values. Significance of the results is enlighten not only by 

international recommendations considering the LNT model, but also by already mentioned 

recent studies (Madas and Balásházy 2011, Chapter 2.3.3.), which describe a much higher 

local tissue dose resulted from the determined effective dose of radon inhalation because of its 

inhomogeneous distribution in the lungs. 

7.2. Environmental factors affecting the spatial and seasonal 

variation of terrestrial radioactivity levels 

7.2.1. Distribution of measurement results in different geological 

environments 

7.2.1.1. Regional geology of the three studied areas  

In this subchapter regional tendencies of radon and thoron emanations, 226Ra, 232Th and 
40K activity concentrations, radon and thoron emanation fractions (RnE-C-H and TnE-C-H, 

Ra-C-H, Th-C-H and K-C-H, fRnE-C-H and fTnE-C-H) and grain size distributions (Tab.5., 7., 

10., 12. and Fig.13., 15., 19., 21., 23.) are discussed. Békés County, E-Mecsek Mts. and Sajó 

and Hernád Rivers Valleys have different geological backgrounds as described in 

Chapter 3.2.3. Any significant difference of measured parameters of regionally grouped adobe 

building material samples is assumed to be its consequence due to the local origin of adobes. 

The actually observed differences detailed below strengthen these assumptions and 

understood by looking at geological backgrounds of the studied areas. 

Adobe samples from Békés County are not characterized by many statistically significant 

observations, this area is the most moderate one. However, the highest 40K activity 

concentration (Tab.7., Fig.15.) and the lowest radon emanation fraction medians are 

connected to this area among the three and the thoron emanation fraction median is also low 

(Tab.10., Fig.19.). The most significant presence of the smallest size, 2-3 and 10 µm peaks in 

grain size distributions is observed in adobe building materials from Békés County (Fig.21.) 

which is consequent with its fluvial, most frequently clay type origin. This causes the 

statistically significantly higher estimated specific surface area median of these samples 

(Tab.12., Fig.23.), however, it does not result in elevated emanation fractions results as 

mentioned above and will be discussed in Chapter 7.2.2. Direct indoor radon and thoron 

activity concentration measurements were carried out at this studied area. These show high 
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central tendencies of 188 and 232 Bq m-3 median values (Tab.16., Fig.24.) for radon and 

thoron, respectively, and analyzed in details in Chapter 7.1.2.  

Adobe samples from E-Mecsek Mts. show significantly higher 226Ra and 232Th activity 

concentration medians than the other two areas (Tab.7., Fig.15.). This seems to be consequent 

to the prevailing granite bedrock (Chapter 3.2.3.), which type of rock is usually considered to 

be enriched in terrestrial radionuclides. The adobe building materials of the area are also 

characterized by the highest thoron emanation median (Tab.5., Fig.13.) as a result of the high 
232Th activity concentration, but not statistically significantly. The difference is mitigated by 

the reduced radon and thoron emanation fractions (Tab.10., Fig.19.). These comparatively 

low emanation fractions and the also observed lowest 40K activity concentration median are 

understood by observing the grain size distribution shift towards bigger grains, i.e. observing 

the most significant presence of the 30 µm size peak (Fig.21.). This shift is probably 

connected to the loess covering the bedrock instead of fluvial origin layers. The lowest 

estimated specific surface area median (Tab.12., Fig.23.) is also connected to this area. Direct 

indoor radon and thoron activity concentration measurements were not carried out at 

E-Mecsek Mts. Radon concentrations cannot be predicted based on building material radon 

emanation results since it also originates from the soil below the buildings. However, the 

thoron emanation results (Tab.5., Fig.13.) suggest that slightly higher indoor thoron activity 

concentrations might be present than what have been measured at Békés County (not 

statistically proven). 

From Sajó and Hernád Rivers Valleys the lowest 226Ra activity concentration median was 

detected in adobe samples. The same for 232Th was also found to be as low as at Békés 

County (Tab.7., Fig.15.). However, significantly higher median radon emanation fraction is 

determined and thoron emanation fraction is also elevated (Tab.10., Fig.19.). The resulted 

radon and thoron emanations are unpredictable; the distributions are strongly overlapped, 

however, the maximum values are connected to this area (Tab.5., Fig.13.). The grain size 

distributions (Fig.21.) and consequently the estimated specific surface areas (Tab.12., Fig.23.) 

seem to be transitions between Békés County and E-Mecsek Mts., many different types of 

sediments are mixed at this area (Chapter 3.2.3.). Direct indoor radon and thoron activity 

concentration measurements have not been performed. However, the laboratory results of the 

adobe building material samples suggest that generally lower thoron activity concentrations 

are expected than at Békés County, but the outlier values can be even higher. 
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7.2.1.2. Local geology at Békés County 

In this subsection the dependence of annual indoor radon and thoron activity 

concentrations (RnC-Y-JH, TnC-Y-JH, RnC-Y-KH and TnC-Y-KH) and γ dose rates (γDR-

Y-JH and γDR-Y-KH) on the local geological formations at Békés County (Fig.4.) is 

discussed.  

Minda et al. (2009) and other authors have already pointed out that indoor radon activity 

concentrations show dependence on geological formations in Hungary. This connection might 

be emphasized in case of adobe dwellings due to the local origin of building materials. In this 

study, three types of geological formations can be considered at Békés County. Among these, 

on clay the highest, on loess medium and on turf the lowest annual radon activity 

concentrations were detected. In case of thoron, the highest median was on turf although the 

maximum values were again on clay (Tab.17., Fig.25., SJ6.). Based on these results, the local 

geology seems to affect differently the radon and thoron levels resulting in different spatial 

variations. The insignificant linear correlation coefficients between radon and thoron isotopes 

are consistent with these observations. Radon and thoron data are generally not elevated in the 

same dwelling, however, for both isotopes the clay formations showed to be the highest risk 

localities at Békés County (SJ6.). Despite of the low correlation coefficients, the indoor 

measured average γ dose rate is consequent with these results, its determined median on clay 

is statistically significantly higher than on loess and also higher than on turf (Tab.23., 

Fig.30.).  

Considering the age of geological formations at Békés County, only statistically not 

significant differences were observed between Pleistocene and Holocene ages. However, it is 

seen (Tab.18., Fig.26. and Tab.24., Fig.31.) that the highest radon and thoron activity 

concentration and also γ dose rate values were measured on Holocene age formations. 

7.2.2. The significance of the texture of adobe building material 

It has been shown that almost all studied adobe building materials have similar bulk 

textural properties and are classified as silt loam (Wunsch 2009, Fig.20.). However, minor 

deviations are observed in their grain size distributions: proportions of clay, silt and sand 

fractions (Fig.20.), amplitude of observed peaks in clay and silt fractions (Fig.21.) and 

estimated specific surface areas (Tab.11., 12. and Fig.22., 23., Chapter 6.1.4. and 7.2.1.1.). In 

this study, the significance of these minor differences might be in the different 226Ra, 232Th 

and also 40K enrichment in different grain size fractions (Chapter 2.2.), and in influencing 
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radon and thoron emanation (and also exhalation) fractions as explained in Chapter 2.3.1.1. 

The actually important processes are aimed to observe by the help of correlation coefficients 

presented in Tab.13., 14. and 15. (Chapter 4.3.3 and 6.1.4.4.).  

Looking at these results, significant differences are seen among the three studied areas. 

Based on the correlation coefficients, the radionuclides of 226Ra, 232Th and 40K correlate 

always with different grain size fractions. Békés County and Sajó and Hernád Rivers Valleys 

show the radionuclides to be enriched in clay and silt fractions; however, at E-Mecsek Mts. 

the sand fractions has a more important role (Tab.13.). This observation is considered to be 

connected to the elevated 226Ra and 232Th activity concentrations at this area (Chapter 7.2.1.1.) 

and also the prevailing granite bedrock and its weathering process. Also significant 

differences among the three studied areas are observed in relationships of characteristic peaks 

in clay and silt fractions to radionuclides: positive correlation coefficients are obtained with 

the 2-3 and 10 or with the 30 µm size peaks (Tab.14.). However, the radionuclide content 

never shows to be belonging to the 0-1 µm grain size range. 

The radon emanation fraction is the most linearly connected to the silt fraction (Tab.13.) 

and more specifically to the 10 µm characteristic peak, except at Békés County (Tab.14.). 

Thoron emanation fraction show inexplicable variation in correlation coefficients. This can 

also be because of the high uncertainty of these thoron results (Chapter 6.1.3.). As the linear 

correlation coefficient between radon and thoron emanation fractions indicate a weak 

relationship (Chapter 6.1.3.) it might be also elevated when the silt fraction and the 10 µm 

characteristic peak is dominant.  

E-Mecsek Mts. shows a shift to bigger grain sizes (30 µm peak, Fig.21.) and a connected 

low estimated specific surface area and hence also an understandable  indication for decreased 

emanation fractions (Tab.10., Fig.19.). This is mitigating the difference of emanation results 

(not statistically significant difference, Tab.5., Fig.13.) originating from the elevated 226Ra 

and 232Th activity concentrations (Tab.7., Fig.15.). However, adobe samples from Békés 

County show statistically significantly higher estimated specific surface area median (Tab.12., 

Fig.23.) and it is clear that they do not have increased radon and thoron emanation fractions 

(Tab.10., Fig.19.). Where the emanation fractions are elevated, Sajó and Hernád Rivers 

Valleys, the specific surface area is not. 

The correlation analysis between the estimated specific surface area and radon and thoron 

emanation fractions separately for the three studied areas (Tab.15.) did not result in the 

expected clear linear relationship neither (Chapter 2.3.1.1.). Within Békés County, correlation 
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coefficients close to 0 (zero) were found (Tab.15.). At E-Mecsek Mts. and Sajó and Hernád 

Rivers Valleys the correlation coefficients of estimated specific surface area with thoron 

emanation fraction are more positive than that with radon emanation fraction, but not 

statistically significant relationship is indicated (Tab.15.). These observations may indicate 

the non-homogeneous distributions of parent nuclides within the grains (also see varying 

correlation coefficients for 226Ra and 232Th activity concentrations in Tab.13., 14. and 

consider the role of mineral coatings described by Greeman and Rose 1996). However, note 

the possibly important role of different type and amount of organic materials added to adobe 

at different studied areas. 

Based on these observations of the study, there is not a general, clear relationship of 

neither external (226Ra, 232Th and 40K activity concentrations), nor internal (radon and thoron 

emanation and consequently exhalation) radiation hazard variation of adobe building 

materials and their textural properties. Other important influencing factors not studied in this 

work have to be considered. However, generally, it can be stated that high radon and thoron 

emanation fractions are determined for Hungarian adobe building material samples with 

medians of 27 and 18 %, respectively (Tab.9., Fig.18.). In the studies of Sas et al. (2012) and 

Sas (2012), the radon emanation fraction of clay samples is decreasing from 18 to close to 

0 % with the increase of heat treatment temperature. This observation is explained by the 

structural changes in pore diameter, pore volume and specific surface area of samples. Since 

adobe building materials samples of this study have not gone through heat treatment, the 

comparably elevated emanation fraction values are understandable. Since comparably low 
226Ra and 232Th activity concentrations were determined for the same samples it can be stated 

that these building materials act as important radon and thoron sources for the reason of the 

elevated emanation fractions.  

7.2.3. Observed connections between indoor radon and thoron 

activity concentrations and weather condition 

MW tests satisfy the criteria of significant difference for seasons more frequently than for 

type and age of geological formations. Therefore, the weather conditions seem to be more 

relevant radon and thoron activity concentration affecting factors than the local geology. 

Below, the results (RnC-S-H and TnC-S-H) are evaluated considering the environmental 

parameters changing through the seasons of the measurement period. 
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Radon median seasonal pattern (Tab.20., Fig.28.) basically follows the typical seasonal 

temperature changes of the studied area. It is explained by the outdoor/indoor temperature 

gradient (Schubert and Schulz 2002) and the resulted pressure gradient because radon is 

always leaving the adobe walls and the soil towards the warmer, i.e. lower pressure side (e.g. 

observed in a Hungarian cave, results published in SJ1.). However, in case of thoron isotope, 

the median values decrease during the whole measurement period (Tab.20., Fig.28.), i.e. they 

do not increase again by autumn when outdoor temperature drops and indoor heating usually 

starts. Statistical variabilities (MAD/median) of both radon and thoron levels are much lower 

in autumn compared to other seasons. These results all indicate the strong influence of another 

environmental parameter, which has the maximum effect at the end of the measurement 

period (SJ6.). 

During the field campaigns, it was experienced that the studied area (Békés County) 

received an extreme amount of precipitation in 2010 but extremely low amount in 2011 

(Fig.33., OMSZ, http://www.met.hu/eghajlat/magyarorszag_eghajlata/). Since the moisture 

content of building materials influences their radon and thoron emanation and exhalation (e.g. 

Hassan et al. 2011, Hosoda et al. 2007, Porstendörfer 1994, Strong and Levins 1982, Tanner 

1980, Chapter 2.3.1.2.), it can indirectly influence the indoor activity concentration values. 

Adobe building material, especially, tends to absorb water from the ground and release the 

moisture during dry spells. Therefore, the strongly decreasing amount of precipitation 

(Fig.33.) and consequently decreasing moisture content of adobe is considered to possibly 

cause the decreased thoron results in autumn (SJ6.). This is possible if the decrease is all 

happening below the “optimal” value of moisture content in the exhalation process 

(determined to be 8% in Hosoda et al. 2007, Chapter 2.3.1.2.). Other studies seem to be 

consistent with our thoron results (Dwivedi et al. 2001, Prasad et al. 2008, Ramola et al. 

2005). If we accept the reasoning above, it has to be assumed that indoor radon data in this 

study are not as strongly affected by the moisture content of the building material because of 

the much longer half-life of this isotope and its additional source, i.e. the soil below the 

dwellings. 

The statistical distributions of measured radon and thoron activity concentrations also 

show seasonal variations. In case of radon the results generally show a lognormal distribution 

but not in the hot summer period. Since it is known (Bossew 2010, Tóth et al. 2006) that 

deviation from the lognormal distribution is connected to sampling heterogeneity, it is 

assumed that at least two types of dwellings are formed by summer, i.e. well and poorly 
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ventilated ones. Consequently, the level of ventilation via opening the windows is considered 

to have a significantly reducing, but unpredictable effect on the radon activity concentration 

(SJ6.). The low Pearson’s linear correlation coefficients for only the summer season (Tab.21.) 

also support this generally accepted process. The effect of ventilation on the thoron activity 

concentration is more complicated than that on that of radon. An experimental study (Shang et 

al. 2005) for example pointed out that indoor radon activity concentration is significantly 

reduced by the increase of airflow, but it does not have a similar effect on thoron. 

The effects of two weather conditions were observed in the data (SJ6.) and additionally a 

third one is considered. The seasonal variations of radon and thoron activity concentrations 

are influenced by the temperature and ventilation weather conditions and might be affected by 

the amount of precipitation. Radon follows the average temperature changes and affected by 

the increased ventilation in summer, however thoron seems to be characterized by the amount 

of precipitation, i.e. the moisture content of adobe building material. 

 

 

Fig.33.: Deviation of monthly averages of measured precipitation (%) in 2010 and 2011 from 

the average of 1971-2000 period, Hungary (OMSZ, 

http://www.met.hu/eghajlat/magyarorszag_eghajlata/). The radon and thoron activity 

concentration measurements started in the winter of 2010, earlier months before the start of 

measurements are able to influence the results (SJ6.).  
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8. CONCLUSIONS AND RECOMMENDATIONS 

As fulfilling specific aims of this study, the results and their evaluation have provided two 

methodology achievements, one regarding radon, the other thoron emanation determination. 

Now it is better possible to deal with radon leakage in the experimental setup in a time saving 

measurement protocol for high number of samples and also with thoron decay in the sample 

and also RAD7 radon-thoron detector and the resulted attenuation in the sample container, 

while measuring the thoron activity concentrations. 

The assumed elevated terrestrial radiation risk in Hungarian adobe dwellings have been 

studied by direct indoor (Békés County) and indirect laboratory measurements of adobe 

building material samples (Békés County, E-Mecsek Mts., Sajó and Hernád Rivers Valleys). 

The results prove that the external radiation of adobe building material does not carry added 

radiation risk, however, the elevation of internal (inhalation) radiation exposure due to the 

exhaled and accumulated radon and thoron is not negligible. It has been shown that more 

attention should be paid to thoron in these dwellings since its contribution to the total internal 

exposure is significantly above the available estimated world average values. 
The 226Ra and 232Th activity concentrations and radon emanation fraction show significant 

differences for adobe sample groups originated from the three distinct areas with different 

geological backgrounds. Among Quaternary sedimentary formations of Békés County, both 

the highest indoor radon and thoron activity concentrations in adobe dwellings are expected 

on clay formations. However, here the weather conditions are shown to be even more 

significant internal exposure variation affecting factors: the average temperature of seasons, 

the increased ventilation in summer and an indication was found for the amount of 

precipitation. 

Summarizing all results of this study, besides pointing out the need of continuous 

methodology improvements in environmental radioactivity measurements, it has been cleared 

that more attention should be paid to the elevated levels of indoor radon and thoron activity 

concentration in Hungarian adobe dwellings. Their mitigation, in the opinion of the author, 

should consider the typical spatial and seasonal variations and should be easily acceptable by 

the residents. The measured levels and experiences on the numerous field campaigns suggest 

that it could be recommended by regular airing. 

Based on the results of this study, eight detailed scientific achievements (thesis) of the 

author have been raised and summarized in a separate chapter.  
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9. THESIS 

1. I have tested a time saving – for large number of samples – radon emanation measurement 

method, the so-called equilibrium method regarding its sensitivity to the radon leakage from 

the experimental setup, which cannot be measured inside the method. I used another radon 

emanation measurement method, the growth curve (ingrowth) method to compare, which 

provides a value for the radon leakage rate in addition. The results show that for the 

appropriate usage of the less time consuming equilibrium method, a proven maximum 

0.0025-0.003 h-1 radon leakage rate (α, about 30-40 % of the value of radon decay constant) 

has to be ensured by the design (careful sealing) of the experimental setup (PV6.). 
 

2. I have described in an experiment a non-linear RAD7 detector thoron activity concentration 

response as a function of the thickness of a cylindrical sample. Thus, I have contributed to the 

final form of a model which is necessary in thoron emanation determination taking into 

account the sample geometry, the thoron decay in RAD7 detector and the resulted thoron 

activity concentration attenuation in the sample container. This model matches my 

experimental results, and provides an estimate for the thoron diffusion coefficient (D) in 

adobe building material, which is in the range of 1 to 3×10-6 m2 s-1 (SJ4.). I applied this value 

in the thoron emanation determination of other samples.  
 

3. I have verified that the external radiation of adobe building material does not carry any 

radiation risk. The building material radiation hazard indices considered (radium equivalent 

index, Raeq and activity concentration index, I) for the 46 adobe samples – from Békés 

County, E-Mecsek Mts. and Sajó and Hernád Rivers Valleys – are far below their given 

threshold values (370 Bq kg-1 and 1, unit) and also lower than for similar types of building 

materials reported in other countries. Both estimated annual external effective doses and in-

situ measured γ dose rates confirm that the building material excess in adobe dwellings is in 

all cases below the accepted criterion of 1 mSv y-1 (SJ2.). 
 

4. I have concluded that the inhaled radon, thoron and their progenies present an important 

internal radiation risk in adobe dwellings. I have measured annual indoor radon and thoron 

activity concentrations at 10 cm distance from adobe walls with medians of 188 and 

232 Bq m-3, respectively. Accepting lognormal distribution I have demonstrated that 14-17 % 

of the adobe dwellings at Békés County have radon activity concentration higher than the 

WHO reference level of 300 Bq m-3. For comparison, accepting normal distribution, 29-32 % 

of them will have higher thoron activity concentration than the same value. I have estimated 
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the radon inhalation doses to exceed 10 mSv y-1 in 7 % of the 53 studied adobe dwellings and 

additionally thoron contributes with an elevated estimated average of 30 % in the total 

inhalation dose (SJ6.).  
 

5. I have stated that the adobe building material acts as generally important radon and thoron 

source for the reason of its high radon and thoron emanation fractions. I have measured high 

radon and thoron emanation fractions (27 and 18 %, respectively) but comparably low 226Ra 

and 232Th activity concentrations (28 and 32 Bq kg-1, respectively, SJ2.) for the 46 adobe 

samples from Békés County, E-Mecsek Mts. and Sajó and Hernád Rivers Valleys. 
 

6. I have pointed out that among determined parameters, the 226Ra and 232Th activity 

concentrations, radon emanation fraction and estimated specific surface area show significant 

differences for adobe sample groups originated from different distinct areas of Békés County, 

E-Mecsek Mts. and Sajó and Hernád Rivers Valleys with different geological backgrounds. In 

this study, the 226Ra and 232Th activity concentrations in adobe building materials are elevated 

on the loess covered E-Mecsek Mts. with granite bedrock (SJ2.). The radon emanation 

fractions are the highest at Sajó and Hernád Rivers Valleys. However, the specific surface 

area estimated from grain size distribution is significantly higher at Békés County. 
 

7. I have observed that the in-situ measured radioactivity levels at Békés County, i.e. the annual 

indoor radon and thoron activity concentrations and the average γ dose rates have 

characteristic spatial distributions on the type of local Quaternary sedimentary formations. 

Among clay, loess and turf, the highest values are always observed and hence can be expected 

on clay formations (SJ6.). Comparing the age of the same formations, Pleistocene, Holocene, 

values slightly higher (<95 % confidence level) are detected on Holocene age formations. 
 

8. I have described and explained different seasonal indoor activity concentration variations for 

radon than for thoron. Radon median displays a close to typical seasonal variation with high 

values in winter and autumn, lower values in spring and low values in summer. At the same 

time thoron median is steadily decreasing during the measurement period from winter to 

autumn. I have also presented different statistical distribution (lognormal, normal) variations 

for the two isotopes. Based on these results I have pointed out that the radon data follow the 

average temperature changes and are affected by the increased ventilation in summer and I 

observed that seasonal thoron data is moving together with the amount of precipitation 

(moisture content of adobe building material) through a one year measurement period (SJ6.).
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9.  TÉZISEK 

1. Meghatároztam egy – nagy mintaszám esetén – időtakarékos egyensúlyi aktivitás-

koncentrációt mérő radonemanáció meghatározási módszer érzékenyégét a mérési elrendezés 

radon kiszökésének mértékére. Erre a radon feltöltődését mérő, és a radon eresztés mértékéről 

is információt adó időigényesebb módszerrel történő összehasonlítás nyújtott lehetőséget. Az 

eredmények alapján 0.0025-0.003 h-1 (α), kb. a radon bomlási állandójának 30-40 %-a alatt 

kell bizonyítottan tartani a radon kiszökést az időtakarékos egyensúlyi aktivitás-koncentrációt 

mérő módszer megfelelő, pontos eredményt adó használatához (PV6.). 
 

2. Egy kísérletben kimértem a minta vastagságától függő RAD7 detektor toronaktivitás-

koncentráció választ, amely egy nem-lineáris összefüggést mutat. Ezzel hozzájárultam az ezt 

leíró modellhez is, amely a minta geometriája mellett azt is figyelme veszi, hogy a toron 

felhígul a mintatartó kamrában a RAD7 detektorból visszaérkező csökkent toronaktivitás-

koncentrációval. A modell jól illeszkedik a kísérleti eredményeimre. Ennek az illesztésnek a 

segítségével egy 1‑3×10‑6 m2 s-1 értékű toron diffúziós állandót becsültem a vályog 

építőanyagban, amelyet felhasználtam egy új módszerben a vizsgált minták toronemanáció 

meghatározására (SJ4.).  
 

3. Igazoltam, hogy a magyarországi vályog építőanyag külső dózisterhelés szempontjából nem 

jelent semmilyen kockázatot. A megfontolásra javasolt építőanyag kockázati indexek (rádium 

ekvivalens index, Raeq és aktivitás-koncentráció index, I) mind a 46 – Békés megyéből, a 

Mórágyi-rög területéről és a Sajó-Hernád völgyéből származó – vályog építőanyag minta 

esetén jóval a határértékek (370 Bq kg-1 és 1, egységnyi) alatt voltak és szintén kisebbek, mint 

más országok hasonló építőanyagaira meghatározott értékek. Emellett, mind a becsült éves 

külső effektív dózis és a helyszínen mért beltéri γ-dózisteljesítmény értékek alapján a vályog 

építőanyagtól származó külső effektív dózisjárulék minden esetben az 1 mSv a-1 megkövetelt 

érték alatt marad (SJ2.).  
 

4. Bemutattam, hogy magyarországi vályogépületekben, mind a radontól, mind a torontól és 

leányelemeiktől származó belső dózisterhelés nem elhanyagolható számú esetben meghaladja 

a WHO által ajánlott maximális radonaktivitás-koncentrációnak (300 Bq m-3) megfelelő 

értéket. Az általam mért radon- és toronaktivitás-koncentráció medián értékek rendre 188 és 

232 Bq m-3 voltak Békés megye területén. Elfogadva az adatok lognormális eloszlását, a 

vályogházak 14-17 %-ában várható a 300 Bq m-3-es szintnél nagyobb radonaktivitás-

koncentráció, amíg normális eloszlást tapasztalva 29-32 %-ukban lesz ugyanennél nagyobb 
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toronaktivitás-koncentráció 10 cm-re a faltól. A radontól származó becsült éves effektív dózis 

a vizsgált 53 vályogépület 7 %-ában meghaladta a 10 mSv a-1 szintet. Ugyanitt az elérhető 

legjobb dózisbecslés alapján, a toron még átlagosan 30 % növekményt okozhat (SJ6.).  
 

5. Igazoltam, hogy a vályog építőanyag fontos radon- és toronforrás szerepének az oka azok 

emelkedett radon- és toronemanációs együtthatói. Mind a 46 – Békés megyéből, a Mórágyi-

rög területéről és a Sajó-Hernád völgyéből származó – vályog építőanyag mintára 

általánosságban emelkedett radon- és toronemanációs együtthatókat (rendre 27 és 18 %) 

határoztam meg, ugyanakkor viszonylag kicsi 226Ra- és 232Th-aktivitás-koncentrációkat 

(rendre 28 és 32 Bq kg-1, SJ2.).  
 

6. Bemutattam, hogy a vályog építőanyag 226Ra- és 232Th-aktivitás-koncentrációja, 

radonemanációs együtthatója, valamint becsült fajlagos felülete szignifikáns különbségeket 

mutat a három különböző geológiai hátérrel rendelkező vizsgált területen (Békés megyében, a 

Mórágyi-rögön és a Sajó-Hernád völgyében). A legnagyobb vályog építőanyagban mérhető 
226Ra- és 232Th-aktivitás-koncentrációk a lösszel fedett Mórágyi-rög gránitos alapkőzetéhez 

köthetők (SJ2.). A Sajó-Hernád völgy mintáiban pedig a radonemanációs együttható 

szignifikánsan nagyobb. Azonban, a szemcseméret eloszlásból becsült fajlagos felület értéke 

Békés megye mintáiban emelkedett. 
 

7. Kimutattam, hogy a helyszínen mért beltéri radon-, toronaktivitás-koncentrációk és 

γ-dózisteljesítmény karakterisztikus területi eloszlással rendelkeznek a vizsgált Békés megyei 

vályogházakban. Ezeket az értékeket a helyi, negyedidőszaki üledékes geológiai 

képződmények szerint csoportosítva, mindegyik esetén, agyagon detektáltam és így itt 

várhatók a legnagyobb értékek a löszös és tőzeges területekkel szemben (SJ6.). A geológiai 

képződmények korát – pleisztocén és holocén – összehasonlítva, mérsékelten (<95 % 

konfidencia szint) nagyobb értékeket mértem a holocén korú formációkon. 
 

8. Különböző szezonális változékonyságot határoztam és magyaráztam meg a helyszínen, 

vályogházakban mért radon- és toronaktivitás-koncentrációkra és azok statisztikai, vagyis 

lognormális és normális eloszlásaira. A radon értékek mediánja télen és ősszel nagy, tavasszal 

közepes, majd nyáron kicsi így egy közel tipikus eloszlást mutatnak. A toron medián 

ugyanakkor folyamatos csökkenést mutat téltől őszig. A radon változásait az évszakra 

jellemző átlaghőmérséklethez, valamint a nyári szellőztetés megnövekedett mértékéhez 

kapcsoltam, amíg a toron, a megfigyelés szerint, a csapadék mennyiségével mozgott együtt az 

egyéves mérési időszak során (SJ6.).  
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SUMMARY  

TERRESTRIAL RADIOACTIVITY IN HUNGARIAN ADOBE BUILDING MATERIAL 
AND DWELLINGS WITH A FOCUS ON THORON (220RN) 

 

Radon (222Rn) and thoron (220Rn) isotopes are responsible for approximately the half of the 

annual effective dose to an average human from natural sources. Thoron can significantly 

contribute to the internal radiation dose in some special environments, like adobe dwellings. 

The main objective of this study was to evaluate the assumed elevated terrestrial radiation risk 

in Hungarian adobe dwellings. The spatial distribution and seasonal variation of the measured 

levels are also considered. This work also provides solutions to some problems occurred in 

the radon and thoron emanation determination methods of building material samples. 

Altogether 46 adobe samples were collected from three distinct areas of Hungary. These 

are Békés County, E-Mecsek Mts. and Sajó and Hernád Rivers Valleys. At Békés County 

in-situ measurements were also carried out in 53 adobe dwellings. The adobe samples were 

studied in laboratory and their radon and thoron emanations, emanation fractions, 226Ra, 232Th 

and 40K activity concentrations, different building material hazard indices, excess to the 

external dose received outdoors and grain size distributions were determined. In the selected 

adobe dwellings indoor radon and thoron activity concentrations in four seasons and γ dose 

rates were measured. Based on the results the inhalation does is estimated. The obtained data 

were evaluated by statistical methods: basic statistic, Mann-Whitney (Wilcoxon) and 

Shapiro-Wilk hypothesis tests and correlation analysis. 

Regarding radon and thoron emanation methodology achievements, now it is better 

possible to deal with radon leakage from generally the experimental setup in a time saving 

measurement protocol and also with thoron decay in the RAD7 radon-thoron detector and 

attenuation in the sample container while measuring the thoron activity concentrations. The 

evaluation of the measured levels shows that the external radiation of adobe building material 

does not carry any radiation risk, however, the elevation of internal (inhalation) radiation 

exposure due to the exhaled and accumulated radon and thoron is not negligible. The most 

significant affecting factors are shown to be the weather conditions. These are considered to 

result different indoor radon and thoron activity concentration seasonal variations in this 

study. It has been cleared that among Quaternary sedimentary formations of Békés County, 

the highest values have to be expected on clay formations. For the adobe building materials of 

the three distinct areas, the highest 226Ra and 232Th activity concentrations (which are the 

sources of radon and thoron) were shown to belong to the E-Mecsek Mts.  
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ÖSSZEFOGLALÁS 

TERRESZTRIÁLIS RADIOAKTIVITÁS MAGYARORSZÁGI VÁLYOGBAN ÉS 
VÁLYOGHÁZAKBAN KÜLÖNÖS TEKINTETTEL A TORONRA (220RN) 
 

A radon (222Rn) és toron (220Rn) izotópok egy átlagos ember természetes forrásból 

származó éves effektív dózisterhelésének kb. feléért felelősek. Ehhez a toron csupán néhány 

speciális környezetben járulhat hozzá jelentősen, például bizonyítottan vályogházakhoz 

hasonló épületekben. Ezen kutatás fő célja az volt, hogy értékelje a feltételezetten emelkedett 

terresztriális radioaktivitás szerepét magyarországi vályogházakban az eredmények 

eloszlásával és évszakos változásaival együtt. A vályogminták vizsgálata ugyanakkor 

hozzájárult az alkalmazott radon- és toronemanáció meghatározás módszereit érintő 

problémák megoldásához is. 

A kutatás során 46 vályogminta került begyűjtésre Békés megye, a Mórágyi-rög és a Sajó-

Hernád völgy területein. Ezen minták laboratóriumi vizsgálata mellett Békés megyében 

helyszíni mérések is történetek 53 vályogházban. A laboratóriumi vizsgálatok során a 

vályogminták radon- és toronemanációja, emanációs együtthatója, 226Ra-, 232Th- és 40K-

aktivitás-koncentrációja, különböző építőanyag kockázati indexei, becsült külső dózisjáruléka 

és szemcseméret eloszlása került meghatározásra. A kiválasztott vályogházakban helyszíni 

mérések történtek, ezek radon- és toronaktivitás-koncentráció négy évszakban, valamint 

γ-dózisteljesítmény adatokat szolgáltattak. Az eredmények alapján megbecsülhető a belső 

dózisterhelés. Az adatokat statisztikai módszerek, alapstatisztikai elemzés, Mann-Whitney 

(Wilcoxon) és Shapiro-Wilk hipotézis tesztek és korreláció analízis segítségével értékeltem. 

Az eredmények hozzájárultak ahhoz, hogy egy időtakarékos radonemanáció mérési 

módszerben megfelelően lehessen értékelni a radon kiszökés jelenségét, valamint, hogy a 

RAD7 radon-toron detektorban történő toron elbomlás majd az ezt követő mintatartó 

kamrában történő felhígulás is kezelhető legyen a toronemanáció meghatározás során. 

Továbbá kijelenthető, hogy a magyarországi vályog építőanyag külső dózisterhelés 

szempontjából nem jelent semmilyen kockázatot. Ugyanezekben az épületekben viszont mind 

a radontól, mind a torontól származó belső dózisterhelés nem elhanyagolható. Az értékeket az 

időjárási körülmények befolyásolják legjelentősebben, amelyek lehetséges eredménye a 

detektált radon és toron évszakos változásainak különbözősége. A Békés megyében található 

negyedidőszaki üledékes geológiai képződmények közül agyagon várhatók a legnagyobb 

beltéri értékek. A három vizsgált terület közül a Mórágyi-rög vályog építőanyagához köthető 

a legnagyobb 226Ra- és 232Th-aktivitás-koncentráció (amelyek a radon és toron forrásai). 


